
ibm.com/redbooks

Front cover

IMS Performance and
Tuning Guide

Jouko Jäntti
David Matthews

Jayesh Prag
Dave Viguers

Yuan Yi
Pete Ziegenfelder

Learn about IMS database, transaction
manager, and system performance

Look at the available methods and
tools for monitoring

Examine various aspects of
Parallel Sysplex

http://www.redbooks.ibm.com/
http://www.redbooks.ibm.com/

International Technical Support Organization

IMS Performance and Tuning Guide

December 2006

SG24-7324-00

© Copyright International Business Machines Corporation 2006. All rights reserved.
Note to U.S. Government Users Restricted Rights -- Use, duplication or disclosure restricted by GSA ADP Schedule
Contract with IBM Corp.

First Edition (December 2006)

This edition applies to IMS Version 9 (program number 5655-J38) or later for use with the z/OS Operating
System.

Note: Before using this information and the product it supports, read the information in “Notices” on
page xi.

Contents

Notices . xi
Trademarks . xii

Preface . xiii
The team that wrote this redbook. xiii
Become a published author .xv
Comments welcome. xvi

Chapter 1. Defining the performance problem in an IMS environment 1
1.1 Performance overview . 2
1.2 Understanding the performance problem . 2

1.2.1 Defining a service level agreement . 2
1.2.2 Transaction profiles. 3
1.2.3 Analysis and interpretation . 3
1.2.4 Tracking and trending . 4

1.3 Events for full function messages . 4
1.3.1 Message arrives into IMS . 4
1.3.2 Message queuing . 5
1.3.3 Message scheduling . 5
1.3.4 Scheduling-end to first DL/I call . 5
1.3.5 Program elapsed time. 5
1.3.6 Sync point processing. 6
1.3.7 Message output . 6

1.4 Events for Fast Path messages . 6
1.4.1 Message arrives into IMS . 6
1.4.2 Fast Path EMH queuing . 6
1.4.3 Fast Path EMH scheduling . 7
1.4.4 Program elapsed time. 7
1.4.5 Sync point processing. 7

1.5 Events for DBCTL . 7
1.5.1 Message arrives into CICS TOR/AOR . 8
1.5.2 Application gets control and issues schedule request . 8
1.5.3 PSB scheduling. 8
1.5.4 Program elapsed time. 8
1.5.5 Sync point processing. 8
1.5.6 Application issues terminate PSB call. 8

1.6 Common log records produced for transaction flows . 8
1.7 Problem identification matrix . 9

Chapter 2. Monitoring methodology . 11
2.1 Establishing monitoring strategies . 12
2.2 Monitoring multiple systems in DB/DC and DCCTL environments 12
2.3 Coordinating performance information in an MSC network. 12
2.4 Monitoring Fast Path systems in DB/DC and DCCTL environments 13
2.5 Transaction flow in DB/DC and DCCTL environments . 13
2.6 The IMS Monitor in DB/DC and DCCTL environments . 17
2.7 Monitoring procedures in a DBCTL environment . 17

Chapter 3. Monitoring tools . 19

© Copyright IBM Corp. 2006. All rights reserved. iii

3.1 IMS monitoring tools . 20
3.2 IMS Monitor . 21
3.3 IMS Performance Analyzer . 26
3.4 File Select and Formatting Print utility (DFSERA10). 27
3.5 Log Transaction Analysis utility (DFSILTA0). 27
3.6 Knowledge-Based Log Analysis (KBLA) . 28

3.6.1 MSC Link Performance Analysis. 30
3.6.2 Statistic Log Record Analysis . 30
3.6.3 DBCTL Transaction Analysis . 32
3.6.4 IRLM Lock Trace Analysis . 34

3.7 IBM Tivoli OMEGAMON XE for IMS on z/OS . 36
3.7.1 OMEGAMON XE for IMS in IMSplex environment . 36
3.7.2 Using OMEGAMON XE for IMS for monitoring IMS Connect 40
3.7.3 Additional references . 41

3.8 IBM IMS Connect Extensions for z/OS . 42
3.9 IBM IMS Buffer Pool Analyzer for z/OS . 43

Chapter 4. IMS and Workload Manager . 45
4.1 Workload manager in an IMS world . 46

4.1.1 Defining IMS workloads to WLM. 46
4.1.2 Rules for ensuring the correct priorities are assigned. 47

4.2 CPU management. 50
4.3 Memory management . 50

4.3.1 Identifying memory-related problems . 51
4.4 I/O subsystem . 51

4.4.1 Ideas to minimize I/O contention. 51

Chapter 5. Database performance . 53
5.1 Access methods . 54

5.1.1 Selecting an access method . 57
5.2 HISAM as opposed to HD access methods . 58

5.2.1 HISAM. 58
5.2.2 SHISAM . 60
5.2.3 HD access methods . 60

5.3 (P)HDAM as opposed to (P)HIDAM . 61
5.3.1 Space use . 62
5.3.2 Sequential processing. 62
5.3.3 I/Os . 62
5.3.4 Reorganizations . 62
5.3.5 Creeping keys . 62
5.3.6 Recommendation summary for (P)HDAM as opposed to (P)HIDAM 63

5.4 HALDB . 64
5.4.1 HALDB partition selection . 64
5.4.2 Key range partition selection. 65
5.4.3 Partition selection exit routine . 65
5.4.4 Defining partition selection . 65
5.4.5 Recommendation summary for HALDB partition selection 65
5.4.6 HALDB indirect data set lists. 66

5.5 Block sizes, CI sizes, and record sizes . 66
5.5.1 Index CI sizes and record sizes . 66
5.5.2 OSAM block sizes and VSAM ESDS CI sizes . 67
5.5.3 FREQ parameter on the SEGM statement . 69
5.5.4 Recommendation summary for block sizes, CI sizes, and record sizes 69

iv IMS Performance and Tuning Guide

5.6 Free space . 70
5.6.1 Specifying free space . 70
5.6.2 HD space search algorithm. 71
5.6.3 Recommendation summary for free space . 71

5.7 Randomization parameters . 71
5.7.1 Randomizer. 72
5.7.2 Number of RAPs . 72
5.7.3 Size of root addressable area . 73
5.7.4 The BYTES parameter . 73
5.7.5 Specifying randomization parameters for PHDAM . 73
5.7.6 Recommendation summary for randomization parameters 73
5.7.7 Monitoring HDAM databases . 74
5.7.8 Loading or reloading HDAM databases . 76

5.8 Fixed length as opposed to variable length segments . 76
5.8.1 Variable length segment . 77
5.8.2 Fixed length segment . 77
5.8.3 Recommendations for fixed as opposed to variable length segments 77

5.9 Pointer options . 78
5.9.1 Hierarchic as opposed to child and twin pointers . 78
5.9.2 Forward only as opposed to forward and backward pointers 79
5.9.3 HIDAM and PHIDAM root segments. 80
5.9.4 Unsequenced dependent segments . 80
5.9.5 Defining hierarchical, physical twin, and physical child pointers 81
5.9.6 Recommendation summary for pointer options . 81

5.10 SCAN= parameter on the DATASET statement . 81
5.11 Multiple data set groups . 82
5.12 Compression . 84

5.12.1 Key compression as opposed to data compression . 85
5.12.2 COMPRTN= parameter . 85
5.12.3 Recommendation summary for compression . 86

5.13 Encryption . 86
5.14 Secondary indexes . 87

5.14.1 Secondary index keys. 87
5.14.2 Direct as opposed to symbolic pointers . 88
5.14.3 Shared secondary indexes . 89
5.14.4 Duplicate data . 89
5.14.5 User data . 89
5.14.6 Sparse indexing . 89
5.14.7 Recommendation summary for secondary indexes . 90

5.15 Fast Path performance considerations . 90
5.15.1 Virtual Storage Option (VSO) . 90
5.15.2 Field (FLD) calls support . 90
5.15.3 Shared Virtual Storage Option (SVSO). 91
5.15.4 DEDB general performance considerations . 91
5.15.5 DASD or channel contention for I/O on DEDB . 91
5.15.6 OTHREAD contention. 91
5.15.7 Increased I/O or CI contention for independent or dependent overflow 91
5.15.8 Overflow Buffer Allocation (OBA) latch wait . 92
5.15.9 DEDB sequential processing . 92
5.15.10 I/O error toleration support for DEDB . 92
5.15.11 DEDB using the Virtual Storage Option . 92
5.15.12 Shared Virtual Storage Option . 96
5.15.13 Local buffer pool definitions . 97

 Contents v

5.15.14 PRELOAD | NOPREL option . 99
5.15.15 Block level locking and root-only DEDBs . 100
5.15.16 Sequential dependent sharing (shared SDEPs) . 100
5.15.17 IMS Fast Path buffers . 101
5.15.18 Normal buffer allocation . 101
5.15.19 Overflow Buffer Allocation (OBA) . 103

5.16 Non-recoverable databases . 104
5.17 OSAM as opposed to VSAM. 104

5.17.1 Performance results on OSAM and VSAM . 105
5.17.2 Recommendation summary for OSAM as opposed to VSAM. 105

5.18 Buffer life concept . 106
5.19 Overflow sequential access method (OSAM) . 106

5.19.1 Tuning OSAM buffers . 106
5.19.2 OSAM data set notes . 111
5.19.3 OSAM sequential buffering . 112

5.20 Virtual storage access method (VSAM) . 115
5.20.1 Tuning VSAM buffers . 115
5.20.2 VSAM background write . 118
5.20.3 VSAM hiperspace buffers . 118
5.20.4 VSAM statistics . 121
5.20.5 Tuning VSAM data sets . 123

5.21 Improve GSAM performance . 123
5.22 When to reorganize. 124

Chapter 6. Transaction manager performance . 125
6.1 Scheduling to first IMS call . 126
6.2 Program load options . 127
6.3 Transaction macro parameter options . 129
6.4 IMS parameters. 130

6.4.1 ARC parameter . 130
6.4.2 BSIZ parameter. 131
6.4.3 CPLOG parameter . 131
6.4.4 DBBF parameter . 131
6.4.5 DBFP parameter . 131
6.4.6 DBFX parameter . 132
6.4.7 Dynamic pools parameters . 133
6.4.8 EMHL parameter. 135
6.4.9 EXVR parameter . 135
6.4.10 Hash tables parameters: LHTS, NHTS, and UHTS . 135
6.4.11 Logging parameters . 135
6.4.12 LSO parameter . 136
6.4.13 Message format buffer pool parameters . 136
6.4.14 OTHR parameter . 137
6.4.15 Parameters for scheduling pools. 137
6.4.16 PI parameters . 137
6.4.17 PRLD parameter . 137
6.4.18 PST and MAXPST parameters . 137
6.4.19 QBUF parameter. 138
6.4.20 RECA parameter. 138
6.4.21 RES parameter . 138
6.4.22 SAV parameter . 138
6.4.23 SRCH parameter . 138
6.4.24 VAUT parameter . 139

vi IMS Performance and Tuning Guide

6.4.25 VSPEC parameter . 139
6.5 Data gathering. 139

6.5.1 IMS Monitor. 139
6.5.2 Recording the pool transaction . 139
6.5.3 Gathering the system monitoring data . 140
6.5.4 IMS log data . 140

6.6 Page fixing . 141
6.7 WLM . 142

6.7.1 IRLM address space . 142
6.7.2 DBRC address space . 142
6.7.3 CQS address space . 143
6.7.4 IMS control region. 143
6.7.5 IMS DLS address space . 143
6.7.6 IMS dependent regions. 143

6.8 IMS variable pool considerations . 144
6.8.1 Relationship with scheduling. 147

Chapter 7. Performance considerations for DBCTL . 149
7.1 DBCTL performance considerations . 150
7.2 DFSPZPxx . 150
7.3 Scheduling . 151
7.4 IMS startup parameters for DBCTL. 151
7.5 Parallel Sysplex. 153

Chapter 8. System considerations . 155
8.1 The IMS logger . 156

8.1.1 Logging considerations . 157
8.2 DBRC . 158

8.2.1 DBRC performance considerations. 159
8.2.2 Defining the RECON data sets . 159
8.2.3 Resolving data set contention problems . 161
8.2.4 DBRC RECON maintenance . 162

8.3 SMF and RMF considerations. 165
8.4 Security considerations . 165
8.5 Batch application performance . 167

8.5.1 Using DLI or DBB . 167
8.6 Utility performance . 168

Chapter 9. Application considerations . 169
9.1 IMS language interface . 170

9.1.1 Structure of a typical program using the language interface. 170
9.2 Performance and programming considerations . 171

9.2.1 SSA considerations. 171
9.2.2 Single as opposed to multiple positioning. 173
9.2.3 Variable length segments . 174
9.2.4 Secondary indexing . 175
9.2.5 Program reusability considerations. 175
9.2.6 Processing options and the PROCOPT statement . 175
9.2.7 Read only programs . 176
9.2.8 PROCOPT=GOT with DBRC SHARECTL . 176
9.2.9 Use of checkpointing in batch . 177
9.2.10 Multi-streaming your batch processes . 178
9.2.11 Why must online programs be serially reusable . 178

9.3 Language environment . 179

 Contents vii

9.3.1 Application and performance considerations in a LE environment 180

Chapter 10. Performance considerations with DB2 . 183
10.1 IMS External Subsystem Attach Facility . 184

10.1.1 Subsystem member . 185
10.2 Tuning the External Subsystem Attach Facility . 187

10.2.1 Thread management. 188
10.2.2 DB2 lock management . 189
10.2.3 DB2 free space . 191
10.2.4 Static as opposed to dynamic SQL. 191
10.2.5 Security controls . 191

10.3 Multi-row FETCH and INSERT . 192
10.4 Tools for monitoring . 192

10.4.1 IMS Performance Analyzer . 193
10.4.2 IMS Monitor. 195
10.4.3 Deadlock report. 198

10.5 When to reorganize your DB2 tablespace or indexspace . 199
10.5.1 Tablespace . 200
10.5.2 Indexspace . 200

10.6 More information . 200

Chapter 11. IMS Parallel Sysplex considerations . 201
11.1 Hardware and microcode . 202

11.1.1 Coupling Facility configuration . 202
11.1.2 Coupling Facility microcode . 202

11.2 Structure sizing . 202
11.3 IRLM considerations . 202
11.4 IRLM lock structure . 204

11.4.1 Lock structure size . 204
11.4.2 False contention . 204
11.4.3 Automatic rebuild . 204
11.4.4 System-managed duplexing . 204

11.5 VSAM cache structure . 205
11.6 OSAM cache structure . 205
11.7 DEDB considerations . 205

11.7.1 Shared VSO . 206
11.8 Application considerations . 206
11.9 Shared queues . 206

11.9.1 IMS parameters . 207
11.9.2 Structure size . 207
11.9.3 Structure duplexing . 208
11.9.4 Overflow . 208
11.9.5 Structure checkpoint . 208
11.9.6 MVS logger . 208
11.9.7 FF scheduling differences. 209
11.9.8 FP Parallel Sysplex processing options . 209

Chapter 12. IMS On Demand performance . 211
12.1 IMS connectivity solutions using IMS Connect . 212

12.1.1 Socket types . 213
12.1.2 Asynchronous output processing . 213
12.1.3 Performance statistics on IMS Connect . 215

12.2 IMS SOAP Gateway . 215
12.2.1 Performance considerations using the IMS SOAP gateway. 216

viii IMS Performance and Tuning Guide

12.3 IMS Java environment . 217
12.3.1 IMS Java application performance considerations . 218
12.3.2 COBOL to Java translations . 219
12.3.3 Performance statistics comparing COBOL to Java. 219

Appendix A. Guidelines and recommendations. 223
A.1 First step . 224
A.2 Choosing an IMS access method . 224
A.3 HISAM . 224

A.3.1 HISAM performance general guidelines. 225
A.4 HDAM . 225

A.4.1 HDAM performance general guidelines . 226
A.5 HIDAM . 227

A.5.1 HIDAM performance general guidelines. 227
A.6 OSAM . 228

A.6.1 OSAM tuning general guidelines . 228
A.7 VSAM tuning general rules . 229

A.7.1 VSAM data set tuning general guidelines. 230
A.7.2 ESDS performance guidelines . 230
A.7.3 KSDS performance guidelines . 231

A.8 Secondary index performance guidelines. 231
A.9 Block or CI size performance guidelines . 232
A.10 FREESPACE performance guidelines . 232
A.11 Segment edit/compression performance considerations . 232
A.12 Programming performance considerations. 232
A.13 Logging performance considerations . 233
A.14 Use HDAM physical sequence sort and reload . 233
A.15 I/O error processing . 233
A.16 What is a Kilobyte . 234

Appendix B. Coding examples. 237
B.1 Sparse index examples . 238

B.1.1 Source segment . 238
B.1.2 Index segment . 241

Abbreviations and acronyms . 245

Related publications . 249
IBM Redbooks . 249
Other publications . 249
Online resources . 251
How to get IBM Redbooks . 251
Help from IBM . 251

Index . 253

 Contents ix

x IMS Performance and Tuning Guide

Notices

This information was developed for products and services offered in the U.S.A.

IBM may not offer the products, services, or features discussed in this document in other countries. Consult
your local IBM representative for information on the products and services currently available in your area. Any
reference to an IBM product, program, or service is not intended to state or imply that only that IBM product,
program, or service may be used. Any functionally equivalent product, program, or service that does not
infringe any IBM intellectual property right may be used instead. However, it is the user's responsibility to
evaluate and verify the operation of any non-IBM product, program, or service.

IBM may have patents or pending patent applications covering subject matter described in this document. The
furnishing of this document does not give you any license to these patents. You can send license inquiries, in
writing, to:
IBM Director of Licensing, IBM Corporation, North Castle Drive, Armonk, NY 10504-1785 U.S.A.

The following paragraph does not apply to the United Kingdom or any other country where such
provisions are inconsistent with local law: INTERNATIONAL BUSINESS MACHINES CORPORATION
PROVIDES THIS PUBLICATION "AS IS" WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESS OR
IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF NON-INFRINGEMENT,
MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Some states do not allow disclaimer of
express or implied warranties in certain transactions, therefore, this statement may not apply to you.

This information could include technical inaccuracies or typographical errors. Changes are periodically made
to the information herein; these changes will be incorporated in new editions of the publication. IBM may make
improvements and/or changes in the product(s) and/or the program(s) described in this publication at any time
without notice.

Any references in this information to non-IBM Web sites are provided for convenience only and do not in any
manner serve as an endorsement of those Web sites. The materials at those Web sites are not part of the
materials for this IBM product and use of those Web sites is at your own risk.

IBM may use or distribute any of the information you supply in any way it believes appropriate without incurring
any obligation to you.

Information concerning non-IBM products was obtained from the suppliers of those products, their published
announcements or other publicly available sources. IBM has not tested those products and cannot confirm the
accuracy of performance, compatibility or any other claims related to non-IBM products. Questions on the
capabilities of non-IBM products should be addressed to the suppliers of those products.

This information contains examples of data and reports used in daily business operations. To illustrate them
as completely as possible, the examples include the names of individuals, companies, brands, and products.
All of these names are fictitious and any similarity to the names and addresses used by an actual business
enterprise is entirely coincidental.

COPYRIGHT LICENSE:

This information contains sample application programs in source language, which illustrate programming
techniques on various operating platforms. You may copy, modify, and distribute these sample programs in
any form without payment to IBM, for the purposes of developing, using, marketing or distributing application
programs conforming to the application programming interface for the operating platform for which the sample
programs are written. These examples have not been thoroughly tested under all conditions. IBM, therefore,
cannot guarantee or imply reliability, serviceability, or function of these programs.

© Copyright IBM Corp. 2006. All rights reserved. xi

Trademarks
The following terms are trademarks of the International Business Machines Corporation in the United States,
other countries, or both:

Redbooks (logo) ™
eServer™
ibm.com®
z/Architecture™
z/OS®
zSeries®
Candle®
CICS®
DB2 Universal Database™
DB2®

FICON®
Hiperspace™
IBM®
IMS™
IMS/ESA®
Language Environment®
MQSeries®
MVS™
OMEGAMON®
OS/390®

Parallel Sysplex®
Redbooks™
RAA®
RACF®
RMF™
Tivoli Enterprise™
Tivoli®
VTAM®
WebSphere®

The following terms are trademarks of other companies:

SAP, and SAP logos are trademarks or registered trademarks of SAP AG in Germany and in several other
countries.

Java, JDBC, JDK, JRE, JSP, JVM, J2EE, RSM, and all Java-based trademarks are trademarks of Sun
Microsystems, Inc. in the United States, other countries, or both.

Other company, product, or service names may be trademarks or service marks of others.

xii IMS Performance and Tuning Guide

Preface

This IBM® Redbook provides IMS™ performance monitoring and tuning information. This
book differs from previous IMS performance and tuning redbooks in that there is less
emphasis on the internal workings of IMS and more information about why and how certain
options might affect the performance of IMS.

Most of the information in the previous IBM Redbook IMS Version 7 Performance Monitoring
and Tuning Update, SG24-6404, is still valid, and in most cases, continues to be valid in any
future versions of IMS. This book is not an update or rewrite but instead attempts to be more
of a guide than a reference. As such, the team gathered experiences and data from actual
production environments as well as from IBM benchmarks and solicited input from experts in
as many areas as possible.

You should be able to find some valuable new information and perhaps validate some things
you might have questioned. Hardware and software characteristics are constantly changing
but hopefully the information you find here provides a basis to help you react to that change
and keep your IMS running efficiently.

In this IBM Redbook, we introduce methods and tools for monitoring and tuning IMS systems
and in addition to IMS TM and DB system-wide performance considerations, we dedicate
separate chapters for application considerations, IMS and DB2® interoperability, the Parallel
Sysplex® environment, and On Demand considerations.

The team that wrote this redbook
This redbook was produced by a team of specialists from around the world working at the
International Technical Support Organization, San Jose Center.

Jouko Jäntti is a Senior IT Specialist at IBM Global Services in Finland and also works for
the Silicon Valley Laboratory as a member of IMS Worldwide Advocate Team. From 2001 to
2003, he was a Project Leader specializing in IMS with the IBM International Technical
Support Organization, San Jose Center. He is the lead author of the IMS-related IBM
Redbooks™ listed in “IBM Redbooks” on page 249.

David Matthews is a Senior IMS Systems Programmer for IBM Global Technology Services
in Australia. He has over 23 years of IMS experience, including application programming,
database administration, and systems programming. He provides technical support and
advice for several major clients in the telecommunications, financial, and airline industries.
His areas of expertise and responsibilities include IMS installation and maintenance, IMS
system management, IMS problem determination, IMS Tools, and IMS-related products.

Jayesh Prag is a Senior Systems Architect for FirstRand Bank Limited in South Africa. He
has 23 years of experience in the financial industry. His areas of expertise include
programming in assembler and Cobol, specializing in IMS TM/DM, and providing guidance
about performance tuning and benchmarking of all mainframe banking applications. He gives
direction and guidance within FirstRand Bank to ensure that banking solutions are
cost-effective and superior with regard to continuous availability and real-time banking
requirements. He has taught many IMS classes about IMS fundamentals and IMS application
design.

© Copyright IBM Corp. 2006. All rights reserved. xiii

Dave Viguers is a member of the IBM IMS Development Team at Silicon Valley Lab working
with performance, test, development, and client support. Dave also develops and delivers
education on IMS Parallel Sysplex. He has spent over 30 years working with IMS in various
functions and organizations.

Yuan Yi is an Advisory IT Specialist at IBM Global Technology Services in China. She has
supported the IMS system for one of the biggest banks in China for about five years. She was
in charge of IMS/DBCTL system management for all client projects, which includes
installation, maintenance, IMSPlex setup, migration, and performance monitoring. She also
helped the client set up the backup and recovery procedure and was involved in disaster
recovery planning.

Pete Ziegenfelder is a Senior Database Administrator for EDS in the United States
specializing in DB2 and IMS TM/DM. He has 28 years of experience in the automotive
industry. He holds a Bachelor of Science degree in Computer Information Systems and a
Associate of Science degree in Data Processing from Lawrence Technological University. His
areas of expertise include DB2 and IMS TM/DM performance and tuning, database recovery,
high volume transactions, and resolving problems with very large DB2 tables and IMS
databases. He gives direction and guidance to DBA teams around the world and has
authored the IMS programmer and IMS DBA reference material used by EDS organizations
worldwide. He has taught classes in a variety of DBMS topics to both application
programmers and database administrators.

Figure 1 The team: Yuan Yi, JJ, Dave, Ziggie, Matt, and Jay

Thanks to the following people for their contributions to this project:

Paolo Bruni
Emma Jacobs
Leslie Parham

xiv IMS Performance and Tuning Guide

Deanna Polm
Sangam Racherla
International Technical Support Organization, San Jose Center

Rich Conway
Bob Haimowitz
International Technical Support Organization, Poughkeepsie Center

Rose Levin
John Butterweck
Jenny Choi
Jeff Fontaine
Mike Gonzales
John Harper
Jeff Maddix
Ernie Marek
Hiram Neal
Bovorit Pibulsonggram
Peggy Rader
Frank Ricchio
Pat Schroeck
Alan Smith
Greg Vance
Vern Watts
Gary Wicks
IBM Silicon Valley Laboratory, San Jose, USA

Rich Lewis
IBM zSeries® Software - IMS, Advanced Technical Support, Americas

John Maher
IBM Software Group, Tivoli®, OMEGAMON® XE for IMS, IBM USA

Mary Innes
IBM Australia

Special thanks to Pete Sadler, an Independent Consultant in UK, for providing a quick but still
an extensive review despite such short notice.

Become a published author
Join us for a two- to six-week residency program! Help write an IBM Redbook dealing with
specific products or solutions, while getting hands-on experience with leading-edge
technologies. You'll have the opportunity to team with IBM technical professionals, Business
Partners, and Clients.

Your efforts will help increase product acceptance and client satisfaction. As a bonus, you'll
develop a network of contacts in IBM development labs, and increase your productivity and
marketability.

Find out more about the residency program, browse the residency index, and apply online at:

ibm.com/redbooks/residencies.html

 Preface xv

http://www.redbooks.ibm.com/residencies.html
http://www.redbooks.ibm.com/residencies.html

Comments welcome
Your comments are important to us!

We want our Redbooks to be as helpful as possible. Send us your comments about this or
other Redbooks in one of the following ways:

� Use the online Contact us review redbook form found at:

ibm.com/redbooks

� Send your comments in an e-mail to:

redbooks@us.ibm.com

� Mail your comments to:

IBM Corporation, International Technical Support Organization
Dept. HYTD Mail Station P099
2455 South Road
Poughkeepsie, NY 12601-5400

xvi IMS Performance and Tuning Guide

http://www.redbooks.ibm.com/
http://www.redbooks.ibm.com/
http://www.redbooks.ibm.com/contacts.html

Chapter 1. Defining the performance
problem in an IMS environment

Performance problems are erratic in nature and generally occur when you least expect them.
This applies to any kind of a system, but in this book, we discuss the performance of IMS
systems. In an environment where we have a combination of both internal and external
variables, what must we do to apply good practices in ensuring that we become proactive? A
number of techniques are available, but the most important is the ability to monitor, profile,
track, and trend transactions.

This chapter discusses defining the problem and looks at the life cycle of an IMS transaction.
We provide a detailed view of a message from its inception at a terminal through to its
processing as an application and finally its reply back to the terminal. The purpose of this
chapter is to highlight areas where performance problems can occur and give you a reference
point in identifying and resolving performance problems.

In this chapter, we provide a brief overview of performance and then discuss full function, Fast
Path, and DBCTL message flows. The message flow depicts the life of a transaction through
IMS and highlights areas where performance problems can occur.

This chapter contains the following:

� Performance overview
� Understanding and defining the problem
� Events for full function messages
� Events for Fast Path messages
� Events for DBCTL
� Common log records produced with transaction flows
� Problem identification checklist

This chapter does not cover any Parallel Sysplex data sharing constraints or shared message
queue performance issues. They are covered in Chapter 11, “IMS Parallel Sysplex
considerations” on page 201.

1

© Copyright IBM Corp. 2006. All rights reserved. 1

1.1 Performance overview

The performance of an IMS system is directly related to a number of internal variables. These
variables can be found in the z/OS® operating system, in IMS/TM, in IMS/DM, in the
application, or in the hardware. External variables include the network and the physical
infrastructure of your private network. These external variables are mostly out of our control,
although they are integral in ensuring respectable response times. An understanding of your
network architecture is paramount in diagnosing network-related response time issues.

IMS is an event driven system and events are represented internally by event control blocks
(ECB). Each event or a multitude of events could result in performance bottlenecks. We
attempt to provide a generic manner by which to monitor and view the IMS system in order to
identify problems as events occur.

1.2 Understanding the performance problem

The z/OS operating system components together with IMS lead you into an information
highway where you become totally enveloped in all its behaviors. This results in a degree of
frustration if you are unable to determine what is causing your performance bottlenecks. Let
us begin by defining the problem and then looking at some of the principles that need to be in
place.

Events that could trigger a performance problem are generally indicated by:

� Service level objectives not being met
� Users complaining about slow response
� Unexpected changes in response times or resource utilizations
� z/OS operating system showing signs of stress
� The throughput on the system is erratic
� Changes in workload which were not anticipated
� Changes in the profile of transactions

The problem we face is how do we differentiate among the various problems and what needs
to be in place to statistically compare workloads in order to isolate the performance
bottleneck.

1.2.1 Defining a service level agreement

Performance objectives must be defined as part of an service level agreement (SLA) with the
relevant business unit. The SLA must define the following:

� Acceptable response times to the business
� Expected current volumes of transactions
� Growth strategy and anticipated future volumes
� Details of transactions and their usage

It must not come as a surprise that we need the ability to track and trend transactions across
all business units throughout the organization. This tracking and trending requires the use of
sophisticated tools and a repository to manage each transaction with its profile. Depending on
what we have agreed to in our SLA, we might need to collect, summarize, and store statistics

Definition: A performance problem is generally noted as bad or erratic response times or
an unacceptable amount of resource usage.

2 IMS Performance and Tuning Guide

and profiles on all transactions 24 hours a day, 365 days a year in a repository. There are
many ways to create a repository and many products that provide you with a view to access
this repository. These tools must have the capability to perform statistical analysis of the data
stored in the repository.

1.2.2 Transaction profiles

The unit of work by which we measure IMS workload is a transaction. An IMS transaction is a
message from either a terminal or an application program that causes application program
logic to be executed.

A transaction profile typically covers the following:

� Host response times:
– Input queue time measurement
– Total elapsed time measurement

� The CPU time required to process the transaction
� The number of database (DL/I and SQL) calls performed by the transaction
� The type of database calls performed:

– By database or table listing each database or table and the type of call
� Number of I/Os required to perform this transaction

A typical transaction generally performs many different types of functions. A transaction
designated to process internet banking can perform transfers and payments as well as
balance inquiries. The profile by transaction is different for each of these functions. Analysis
must be done to quantify these profiles to percentiles of the various functions of a transaction
in order to make meaningful decisions.

This implies that making changes to a very low percentile-used function would not be
beneficial, when compared to the total amount of CPU consumed and DL/I calls made. Cost
as opposed to effort becomes a factor in most decisions.

When you have a transaction profiling repository with daily feeds into the repository from the
IMS log records, other performance log records generated by vendor products, and SMF
records, analysis and interpretation of the data become crucial issues.

1.2.3 Analysis and interpretation
As we introduce new functionality to applications, the transaction profile varies over time and
the day of the week. Certain functions might only be used heavily during certain times of the
month. When analyzing data from the repository, you need to consider the following:

� Am I comparing profiles of similar days?
� Has there been a sudden shift in the profile as a result of introducing new functionality?
� Has my I/O profile changed?
� Have the volumes increased?

This and many more questions need to be answered before analyzing data and comparing
data to similar historical periods.

This leads us into the next section, which requires that we track and trend our profiles to
ensure that we remain proactive in identifying and resolving problems before they occur.

Chapter 1. Defining the performance problem in an IMS environment 3

1.2.4 Tracking and trending

As time progresses, so does technology. We need to ensure that we manage expectations
and contain cost per transaction within reasonable limits. This containment of costs can only
be achieved if we track and trend our workload to understand future capacity requirements of
all workloads. Our recommendation is that full time tracking and trending become the
responsibility of a performance expert with the ability to influence the manner in which
business areas operate.

Running out of capacity as a result of being unable to project increased workloads can prove
to be disastrous to any organization. There are many tools available to aid in capacity
planning. What needs to be achieved is the ability to forecast future workload increases on
your current capacity. This forecast is based on the ability to track and trend workloads as well
as future business requirements.

1.3 Events for full function messages

This section provide us with a means to identify possible performance problems. We explore
both full function and Fast Path transaction flows with a view to identifying performance
problems as we flow through the various events. Table 1-1 shows the list of events for full
function messages.

Table 1-1 Event list for full function messages

1.3.1 Message arrives into IMS

The message arrival event begins when the message is placed by either VTAM® in an IMS
receive-any (RECANY) buffer or transported through IMS Connect to IMS Open Transaction
Manager Access (OTMA). Either way, the message is moved to a buffer acquired in the High

Event Activity Problem identification

Message arrives into IMS Message format services
(MFS) routines, basic edit, or
intersystem communication
(ISC) edit

RECA, High I/O Pool (HIOP),
CIOP, and MFBP pool
shortages evident

Message queuing Message queued to scheduler
message block (SMB)

QBUF shortage evident

Message scheduling Schedule message in
dependent region

Transaction queuing or pool
intent failures

Scheduling-end to first DL/I call Load programs, subroutines,
and initialize working storage

Shows up as high CPU and
elapsed time

Program elapsed time Application program invoked
and DL/I calls performed

High elapsed times as a result
of application, database, WLM,
I/O subsystem, or system
issues

Sync point Phase one and two commit High elapsed times as a result
of WADS, OLDS, or I/O
subsystem delays

Message output Send output to destination HIOP pool shortage, or network
delays before message is
dequeued

4 IMS Performance and Tuning Guide

I/O Pool (HIOP) where it is edited by message format services (MFS) routines, IMS basic edit,
or intersystem communication (ISC) edit.

1.3.2 Message queuing

Message queuing events require the message in the standard IMS format llzz|trancode|data.
It is allocated a position on one of the message queue data sets. The message is moved to
the message queue pool and enqueued on the scheduler message block (SMB).

1.3.3 Message scheduling

Message scheduling events are dependent on a number of variables. The transaction
definition is the starting point for any scheduling issues. Variables that affect transaction
scheduling are:

� SCHDTYP on APPLCTN macro
� Serial or parallel
� PROCLIM
� PARLIM
� PRIORITY
� MAXRGN
� CLASS of transaction
� SCHD

The next step is to identify any pool intent failures. IMS requires the program specification
block (PSB) directory (PDIR) and data management block (DMB) directory (DDIR) for the
scheduled PSB to be available. The PSB and DMB are loaded when the transaction first
executes. If not resident, then ACBLIB I/Os are required to load the PSBs and DMBs. The
PSB, PSB work pool (PSBW), and DMB pools must be large enough to accommodate all
PSBs and DMBs, if possible, and must be monitored regularly.

1.3.4 Scheduling-end to first DL/I call

Scheduling-end to first DL/I events include program or subroutine load and any program and
working storage initialization being performed by the application. You need to review long time
periods when evident in this event from a program load or application design perspective.

1.3.5 Program elapsed time

Program elapsed time events are composed of many variables that can influence the elapsed
time of a transaction. Elapsed time is measured from the time that the application is
scheduled into the IMS regions until synchronization point (sync point) processing. Variables
that can affect elapsed time are:

� Program execution time
� Time required to complete the DL/I calls and this is made up of two components:

– IWAIT time, which is the time DL/I has to acquire the database record
– NOT-IWAIT time, which is the time DL/I spends in code execution

� I/O subsystem delays as a result of DASD response times
� System waits, over which IMS has no influence

Chapter 1. Defining the performance problem in an IMS environment 5

1.3.6 Sync point processing

Sync point processing events for full function (FF) require that all I/Os actually take place. IMS
follows the standard two-phase commit process. In an IMS only workload, this two-phase
commit is actually a call to two separate modules. Generally, a two-phase commit is between
IMS and DB2 and follows the standard two-phase commit process. In IMS terms, a get unique
(GU) call to the IOPCB to retrieve the next message implies sync point.

1.3.7 Message output

Message output event implies termination of the program so that output messages are ready
to be sent to their final destination. The HIOP pool usage is important in identifying possible
performance-related issues in this area.

1.4 Events for Fast Path messages

Table 1-2 is specific to messages being processed through Fast Path expedited message
handling (EMH). Certain overlaps exist between Fast Path and full function and are
mentioned below.

Table 1-2 Event list for Fast Path messages

1.4.1 Message arrives into IMS
Message arrival event for Fast Path is essentially the same as for full function.

1.4.2 Fast Path EMH queuing

Fast Path EMH event requires IMS to make a decision on whether the message is Fast Path
potential (FPP) or Fast Path exclusive (FPE). If FPP, then DBFHAGU0 is called to decide
whether the message needs to be processed by full function IMS or whether a routing code
needs to be assigned to make it Fast Path. If FPE, then IMS queues the message off the
BALG. The BALG becomes the queue anchor point.

Event Activity Problem identification

Message arrives into IMS MFS, basic edit or ISC edit RECA, MFBP, HIOP, or CIOP
pool shortages evident

Fast Path expedited message
handling (EMH) queuing

Determine if Fast Path (FP)
potential or exclusive

EMHB pool shortages

Fast Path EMH scheduling First-in-first-out scheduling by
balancing group (BALG)

Queuing on BALG

Program elapsed time Application program invoked
and DL/I calls performed

High elapsed times as a result
of application, database, WLM,
I/O subsystem, or system
issues

Sync point Phase one and two commit Output thread shortage (OTHR)

Message output Send output to destination EMHB pool shortage, or
network delays before message
is dequeued

6 IMS Performance and Tuning Guide

1.4.3 Fast Path EMH scheduling

Fast Path EMH scheduling event has no complex priority scheduling schema when compared
to FF. Messages are processed using a BALG on a first-in-first-out (FIFO) basis and
scheduled into an available IMS Fast Path (IFP) region. All IFP regions are always in
wait-for-input (WFI) mode so the overhead of program load is avoided.

1.4.4 Program elapsed time

Program elapsed time event involves the same principle as mentioned for FF, with the
exception that any Fast Path DEDB or MSDB reads are performed under the control of the
control region instead of the DL/I separate address space.

1.4.5 Sync point processing
Fast Path sync point processing is significantly different from full function sync point
processing. A key element of Fast Path sync point processing is that all Fast Path writes
happen asynchronously through output threads (OTHR). Two-phase commit process is still
used by Fast Path, but it operates differently. IMS Fast Path does not have to wait for the I/O to
be physically written. If phase one processing is unsuccessful, the buffers are thrown away,
and the transaction is either rescheduled or thrown away in its entirety, depending on the
nature of the problem.

1.5 Events for DBCTL

Table 1-3 is specific to messages being processed via DBCTL.

Table 1-3 Event list for DBCTL

Event Activity Problem identification

Message arrives into CICS®
TOR/AOR.

Format message and call/link
related application programs.

Application gets control and
issues schedule request.

EXEC DL/I command.

PSB scheduling. DBT thread TCB is given
control.
Recovery token establishes.

Insufficient PSB, DMB, DB
work, PSB work, or EPCB pool
space can cause scheduling
delays or failures

Program elapsed time. Application program invoked
and DL/I calls performed.

High elapsed times as a result
of application, database, WLM,
I/O subsystem, or system
issues.

Sync point. IMS hardens the log data and
writes updated full function
database blocks. Fast Path
database updates are
asynchronous.

WADS and OLDS activity.
Database DASD I/O.

Application issues terminate
PSB call.

IMS frees scheduled resources.

Chapter 1. Defining the performance problem in an IMS environment 7

1.5.1 Message arrives into CICS TOR/AOR

Message arrives at CICS TOR first and unless also acting as an AOR, the message can be
routed to a CICS AOR.

1.5.2 Application gets control and issues schedule request

Application issues DL/I SCHED call to reserve IMS resources.

1.5.3 PSB scheduling

In most cases, one PSB is scheduled for one CICS transaction. IMS checks if the PSB and
related databases are available. It then allocates space for the necessary control blocks in
various scheduling pools and loads the required blocks.

1.5.4 Program elapsed time

Program elapsed time event is composed of many variables that can influence the elapsed
time of a transaction. Elapsed time is measured from the time the PSB is scheduled until the
PSB is terminated by the application. Variables that can affect elapsed time are:

� Program execution time
� Time required to complete the DL/I calls and is made up of two components:

– IWAIT time, which is the time DL/I has to acquire the database record
– NOT-IWAIT time, which is the time DL/I spends in code execution

� I/O subsystem delays as a result of DASD response times
� System waits, which IMS has no influence over

1.5.5 Sync point processing

IMS hardens the log data and writes updated full function database blocks. Fast Path writes
are performed asynchronously to sync point processing.

1.5.6 Application issues terminate PSB call

PSB terminates and scheduling resources are freed.

1.6 Common log records produced for transaction flows

Table 1-4 on page 9 provides a list of the most commonly used log records produced during
the life cycle of an IMS transaction. Identifying these log records provides the ability to
diagnose performance-related problems.

8 IMS Performance and Tuning Guide

Table 1-4 Common log records produced by both full function and Fast Path

1.7 Problem identification matrix

Table 1-5 on page 10 provides a view through the life cycle of an IMS transaction and is
useful for isolating specific events where performance problems occur.

Record Description

X’01’ Message received from a terminal.

X’03’ Message received from DL/I.

X’07’ An application program was terminated.

X’08’ An application program was scheduled.

X’31’ Message queue GU.

X’32’ Message queue reject.

X’33’ Message queue free.

X’34’ Message cancel.

X’35’ Message queue enqueue.

X’36’ Message queue dequeue.

X’37’ Sync point record.

X’38’ Message after abend.

X’50’ Database undo/redo record.

X’5901’ Fast Path input.

X’5903’ Fast Path output.

X’5936’ Fast Path dequeue.

X’5937’ Fast Path sync point.

X’5938’ Fast Path abend.

X’5950’ Fast Path phase1 sync record.

X’5953’ Fast Path sequential dependent (SDEP) write.

Chapter 1. Defining the performance problem in an IMS environment 9

Table 1-5 Starting point in looking for performance bottlenecks

Problem What might be going on Chapter

Erratic transaction arrival rates
evident with bad response
times

Possible RECA, HIOP buffer
pool shortages, or IMS has
gone into selective dispatching.

See Chapter 6, “Transaction
manager performance” on
page 125.

Transactions queuing Possible QBUF shortage,
message queue I/O
bottlenecks, scheduling
problems, or DMB/PSB pool
failures.

See Chapter 6, “Transaction
manager performance” on
page 125.

Schedule to first DL/I call time is
high

Possible program load,
program initialization problem.

See Chapter 6, “Transaction
manager performance” on
page 125 and Chapter 4, “IMS
and Workload Manager” on
page 45.

High elapsed times Program execution time.
DL/I IWAIT or NOT-IWAIT time.
System waits.

See Chapter 4, “IMS and
Workload Manager” on
page 45, Figure 5 on page 53,
Chapter 6, “Transaction
manager performance” on
page 125, and Chapter 9,
“Application considerations” on
page 169.

Long waits for sync point I/O subsystem delays. See Chapter 4, “IMS and
Workload Manager” on
page 45.

Output message delays Possible HIOP or network
delays.

See Chapter 6, “Transaction
manager performance” on
page 125.

10 IMS Performance and Tuning Guide

Chapter 2. Monitoring methodology

This chapter discusses monitoring methodology. Monitoring is the collection and
interpretation of IMS data. Monitoring should be an ongoing task because:

� Monitoring helps you establish base profiles, workload statistics, and data for capacity
planning and prediction.

� Monitoring gives early warning and comparative data to help you prevent performance
problems.

� Monitoring validates tuning you have done in response to a performance problem and
ascertains the effectiveness of that tuning.

An historical base and conclusions from continuous monitoring provide a good start
to answering user complaints and an initial direction for tuning projects.

In this chapter, we describe the following topics:

� Establishing monitoring strategies
� Monitoring multiple systems in DB/DC and DCCTL environments
� Coordinating performance information in an MSC Network
� Monitoring Fast Path systems in DB/DC and DCCTL environments
� Transaction flow in DB/DC and DCCTL environments
� The IMS Monitor in DB/DC and DCCTL environments
� Monitoring procedures in a DBCTL environment

2

© Copyright IBM Corp. 2006. All rights reserved. 11

2.1 Establishing monitoring strategies

Several types of monitoring strategies are available. You can:

� Summarize actual workload for the entire online execution. This can include both
continuous and periodic tracking. You can track total workload or selected representative
transactions.

� Take sample snapshots at peak loads and under normal conditions. It is always useful to
monitor the peak periods for two reasons:

– Bottlenecks and response time problems are more pronounced at peak volumes.
– The current peak load is a good indicator of what the future average will be like.

� Monitor critical transactions or programs that have documented performance criteria.

� Use the z/OS Workload Manager to help manage workload distribution, balance
workloads, and distribute resources.

Plan your monitoring procedures in advance. A strategy should explain the tools to be used,
the analysis techniques to be used, the operational extent of those activities, and how often
they are to be performed.

Regardless of which strategy you use, you need to:

� Develop performance criteria
� Develop a master plan for monitoring, data gathering, and analysis

2.2 Monitoring multiple systems in DB/DC and DCCTL
environments

You should plan to obtain both statistical and performance data for IMS online systems that
are part of a multi-system network. You can use the same monitoring tools that are used for
generating performance data for single IMS systems.

The IMS Monitor can be executed concurrently in several systems. You obtain IMS Monitor
reports for each IMS system and coordinate your processing analysis:

� The IMS Statistical Analysis utility produces summaries of transaction traffic for each
system. Again, you combine the statistics for a composite picture.

� The IMS Transaction Analysis utility enables you to trace transactions across multiple
systems and examine the traffic using various active physical links.

2.3 Coordinating performance information in an MSC network

The IMS system log for each system participating in Multiple Systems Coupling (MSC)
contains only the record of events that take place in that system. The logging of traffic
received on links is included. You can augment the system log documentation that records
the checkpoint intervals with the system identifications of all coupled systems. This helps you
interpret reports, because you know of transactions that might be present in message queues
but are not processed, and you can expect additional transaction loads from remote sources.
In your analysis procedures, include ways of isolating the processing triggered by
transactions originating from another system.

12 IMS Performance and Tuning Guide

To satisfy the need for monitoring with typical activity that includes cross-system processing,
coordinate your scheduling of the IMS Monitor and other traces between master terminal
operators. The span of the monitoring does not have to be exactly the same, but if it is widely
different, the averaging of report summaries can make it harder to interpret the effect of the
processing triggered by cross-system messages.

Related Reading: For more information about interpreting MSC reports, see IMS Version 9:
Utilities Reference: Database and Transaction Manager, SC18-7833.

2.4 Monitoring Fast Path systems in DB/DC and DCCTL
environments

The major emphasis for monitoring IMS online systems that include message-driven Fast
Path application programs is the balance between rapid response and high transaction rates.
With Fast Path, performance data is made part of the system log information. Also, the IMS
Monitor can be used to monitor Fast Path activities. You can use the IMS Fast Path Log
Analysis utility to generate statistical reports from the system log records. This utility can
provide summaries of the Fast Path transaction loads, reports that highlight exceptional
response time, and a breakdown of the elapsed time between key events during the time in
the system.

The system administration tasks of setting up a monitoring strategy, performance profiles, and
analysis procedures should be carried into the Fast Path environment.

Related Reading: For more information about using either the IMS Monitor or the IMS Fast
Path Log Analysis utility, see IMS Version 9: Utilities Reference: System, SC18-7834.

2.5 Transaction flow in DB/DC and DCCTL environments

A distinct sequence of events occurs during the processing of a transaction. Message-related
processing is asynchronous within IMS, that is, not associated with a dependent region's
processing. Examples of this kind of processing are message traffic, editing, formatting, and
recovery-related message enqueuing, any of which can be done concurrently with application
program processing for other transactions. Events from application program scheduling to
termination are associated with a PST and can be regarded as synchronous.

Figure 2-1 on page 14 shows you a sequence of events to give you an overall picture of the
activity that takes place when an online IMS system is processing a mix of transactions
concurrently. Each event is explained in the notes that follow.

The unit of work by which most IMS systems are measured is the transaction (or a single
conversation iteration, from entering the input message to receipt of one or more output
messages in response). One way of representing the flow of units of work is to compare it to
three funnels through which all transactions must pass, as illustrated in Figure 2-1 on
page 14. The events that account for the principal contributions to transaction response time
are numbered in the center. The items entered on the left of the diagram are
message-related, and those on the right are related to the application program. The arrows
trace the flow for an individual transaction. (The diagram does not show the paging element or
system checkpoint processing that is distributed through the elapsed times.)

Chapter 2. Monitoring methodology 13

Figure 2-1 Processing events during transaction flow through IMS

Notes to Figure 2-1:

1. Wait for poll

This used to be the time between pressing the Enter key and receiving a poll that results in
the data being read by the channel program when using BTAM. Now this time does not
belong to IMS.

2. Data transfer

This time includes propagation delay and modem turnarounds for multi-block input
messages. You can estimate the data transfer times if the volume of data transmitted is
known.

3. Input message processing

The IMS control of the transaction begins when the input message is available in the
HIOP. The time that the message spends in this pool, in MFS processing, and in being
moved to the message queue buffers affects response time. Individual transaction I/O to
the Format library affects the message queue. A major factor in determining response time
is whether the respective pools are large enough for the current volume of transactions
flowing into input queuing. In particular, if the message queue pool is too small, overflow to
the message queue data sets occurs.

14 IMS Performance and Tuning Guide

4. Message classification

This is the call to the z/OS WLM to obtain a WLM service classification for the incoming
message.

5. Input queuing

This is the time spent on the input queue or in the message queue buffers waiting for a
message region to become available. In a busy system, this time can become a major
portion of the response time. The pattern of programs scheduled into available regions
and the region occupancy percentage are important and should be closely monitored.

6. Scheduling

Because of class scheduling, regions can be idle while transactions are still on the queue.
The effects of scheduling parameters can be:

– Termination of scheduling as a result of PSB conflict or message class priorities
– Termination of scheduling as a result of intent conflict
– Extension of scheduling by I/Os to IMS.ACBLIB for intent lists, PSBs, or DMBs
– Pool space failures in either the PSB or DMB pools

7. Init PB call (activate delay monitoring environment)

Activate the WLM delay monitoring environment for the message when it is placed into the
dependent region. The WLM PB is initialized with the Service Classification and
transaction name, message arrival time, program execution start time (current time), user
ID, and so forth.

8. Program load

See event 9.

9. Program initialization

After scheduling, several kinds of processing events occur before the application program
can start:

– Contents supervision for the dependent region
– Location of program libraries and directories to them
– Program fetch from the program library
– Program initialization up to the time of the first DL/I call to the message queue

For monitoring, you can obtain the overall time for the above activities. The number of I/Os
should be checked periodically.

10.Message queue GU

This is the GU call to the message queue. It is chosen as a measuring point because the
event is recorded on the system log and is used as a starting point for iterations of
processing when more than one message is serviced at a single scheduling of the
program.

11.Program execution

The time for program execution, from first message call to the output message insert, is a
basic statistic for each transaction. It is important to account for that time in terms of the
work performed:

– The number of transactions processed per schedule
– The number and type of DL/I calls per transaction
– The number of I/Os per transaction

A useful breakdown of elapsed time into processor time and I/O helps determine which
transactions use significant resource.

Chapter 2. Monitoring methodology 15

12.Output message insert

This time begins the asynchronous processing for the output response. The output
message requests flow into the funnel to be serviced while the application program is
either beginning to process another input message or is performing closeout processing
and program termination.

13.Wait for sync point

When an output message is issued by a program, it is enqueued on a temporary
destination until the program reaches a synchronization point. For programs specified as
MODE=MULT, a long delay in output transmission can occur when the program goes on to
process several transactions at one scheduling. None of the previous output messages
can be released for transmission until the program ends. If the program fails, all current
transactions are backed out. Actually, when the messages are dequeued, LIFO sequence
is used, from temporary to permanent destination. With MODE=SNGL, the wait for sync
point (at the next GU to the message queue) is normally negligible.

14.Program termination

In the case of MODE=MULT, discussed in event 13, the synchronization point occurs at
program termination. Any database updates are purged from the database buffer pools,
and the waiting output messages are released.

In the MODE=SNGL case, the synchronization point occurs at the previous message
queue GU call (usually a GU with a QC status code), and no database commit processing
occurs at termination, unless the application program has updated a database after the
last message queue GU.

15.WLM notify call

This tells WLM that the application program has ended execution. The PB and current
time are passed to WLM.

16.Wait for selection

This time is similar to Wait for Poll on input, with one difference, which is an output
message might not have to wait for the completion of a polling cycle if no polling is in
progress on the line at the time the output message is enqueued. However, there might be
a wait for the duration of data transmission to other terminals on the line. In a busy system,
this could account for the majority of time spent on the output queue.

17.Output message processing

This activity is similar to event 3.

18.WLM report call

This tells WLM the response is being sent. IMS passes the input message arrival time,
the Service Classification, and the current time (output message send time).

19.Data transfer

This activity is similar to event 2.

20.Output queue processing

Output messages that have been sent are dequeued after their receipt has been
acknowledged by the terminal. In the case of paged output, the acknowledgment is a
consequence of another input or a PA2 entry from the terminal.

16 IMS Performance and Tuning Guide

2.6 The IMS Monitor in DB/DC and DCCTL environments

The principal monitoring tool provided by IMS is the IMS Monitor. It is an integral part of the
control program in the DB/DC environment. The counterpart of the IMS Monitor in the batch
environment is the Database Batch Monitor.

The IMS Monitor collects data while the DB/DC environment is operating. Information in the
form of monitor records is gathered for all dispatch events and placed in a sequential data set.
The IMS Monitor data set is specified on the IMSMON DD statement in the control region
JCL; data is added to the data set when the /TRACE command activates the monitor. The
MTO can start and stop the monitor, guided by awareness of the system's status, to obtain
several snapshots.

Related Reading: For more information about interpreting IMS Monitor reports, see IMS
Version 9: Utilities Reference: System, SC18-7834.

2.7 Monitoring procedures in a DBCTL environment

This topic explains how to establish monitoring procedures for your DBCTL environment.
First, consider that monitoring in a DB/DC environment generally refers to the monitoring of
transactions. The transaction is entered by an user on a terminal, is processed by the DB/DC
environment, and returns a result to the user. Transaction characteristics that are measured
include total response time and the number and duration of resource contentions.

A DBCTL environment has no transactions and no terminal users. It does, however, do work
on behalf of CCTL transactions that are entered by CCTL terminal users. DBCTL monitoring
provides data about the DBCTL processing that occurs when a CCTL transaction accesses
databases in a DBCTL environment. This access is provided by the CCTL making the DRA
request.

The most typical sequence of DRA requests that represents a CCTL transaction would be:

� A SCHED request to schedule a PSB in the DBCTL environment
� A DL/I request to make database calls
� A sync point request, COMMTERM, to commit the database updates and release the PSB

The DBCTL process that encompasses this request is called a unit of recovery (UOR).

DBCTL provides UOR monitoring data, such as:

� Total time the UOR exists
� Wait time to schedule a PSB
� I/O activity during database calls

This information is similar to, and is often the same as, DB/DC monitoring data. However, in a
DBCTL environment, the UOR data represents only a part of the total processing of a CCTL
transaction. You must also include CCTL monitoring data to get an overall view of the CCTL
transaction performance.

In this topic, the term transaction refers to a CCTL transaction. When it applies, UOR is
specifically named.

The CCTL administrator must decide what strategy to use to monitor transaction
performance. Several types of monitoring strategies are available.

Chapter 2. Monitoring methodology 17

You can:

� Summarize actual workload for the entire online execution. This can be continuous or at
an agreed-to frequency. Total workload or selected representative transactions can be
tracked.

� Take sample snapshots at peak loads and under normal conditions. It is always useful to
monitor the peak periods for two reasons:
– Bottlenecks and response time problems are more pronounced at peak volumes.
– The current peak load is a good indicator of what the future average will be like.

� Monitor critical transactions or programs that have documented performance criteria.

18 IMS Performance and Tuning Guide

Chapter 3. Monitoring tools

This chapter describes some of the most commonly used IMS monitoring tools that give a
detailed picture of how IMS uses system resources, how to identify bottlenecks within IMS,
and how z/OS performance problems affect overall IMS performance.

In this chapter, the following monitoring tools are described:

� IMS Monitor
� IMS Performance Analyzer
� File Select and Formatting Print utility
� Log Transaction Analysis utility
� Knowledge-Based Log Analysis
� IBM Tivoli OMEGAMON XE for IMS on z/OS
� IBM IMS Connect Extensions for z/OS
� IBM IMS Buffer Pool Analyzer for z/OS

3

© Copyright IBM Corp. 2006. All rights reserved. 19

3.1 IMS monitoring tools

The effective use of system resources, CPU cycles, real storage, and I/O devices is the goal
of any IMS installation. Measurement tools that determine how the resources are used are
necessary for any performance evaluation. Although important measurement tools are
integrated into the z/OS system, your installation needs additional tools to collect all of the
data required for IMS performance evaluation.

The program offerings most commonly used in IMS performance evaluation are the only ones
discussed. Many more program offerings are available, and your installation can evaluate
their usefulness. Table 3-1 lists the IMS tools that are required to perform an IMS tuning
exercise. Measurement tools for an IMS system consist of the IMS Monitor, IMS Performance
Analyzer (IMS PA), IMS Version 9 Knowledge-Based Log Analysis (KBLA), OMEGAMON,
and IMS utilities that process the IMS log. Some of the tools are integrated into the IMS
product, and others are program offerings. These tools give you a detailed picture of how IMS
uses system resources. They can identify bottlenecks within IMS, and, when used in
conjunction with the z/OS data, they show how z/OS performance problems affect overall IMS
performance.

The measurement tools discussed below do not provide all the data necessary for a complete
evaluation of current system performance. They do not provide information about how and
under what conditions each resource is used, nor do they provide information about the
existing system configuration while the data is being collected. This data, used in conjunction
with the data produced by the measurement tools, provides the basic information that you
must have to conduct a system performance evaluation. It is therefore extremely important to
use as many techniques as possible to get information about the system.

Table 3-1 IMS monitoring tools

Tool Type Description Documentation

IMS Monitor IMS
component

IMS Monitor traces IMS activities at the
ITASK level of detail. An offline program
generates reports describing IMS
online characteristics. It is the primary
tool for IMS tuning.

IMS Version 9 Utilities
Reference: Database
Manager and
Transaction Manager,
SC18-7833

File Select and
Formatting
Print utility
(DFSERA10)

IMS
component

File Select and Formatting Print utility
formats and prints selected records
from the IMS log.

IMS Version 9 Utilities
Reference: System,
SC18-7834

IMS Version 9
Knowledge-
Based Log
Analysis
(KBLA)

IMS
component

KBLA has an ISPF panel driven
interface, which you can use to invoke
existing log and trace utilities as well as
several new programs, which provide
more interpretative and user friendly
information. KBLA can significantly
reduce the need to reference the
utilities manuals, and it can help you
avoid JCL or control statement errors.
It should also reduce or eliminate the
need to cross reference with control
block DSECTS.

IMS Version 9 Utilities
Reference: System,
SC18-7834, and
IMS Version 9
Implementation Guide -
A Technical Overview,
SG24-6398

20 IMS Performance and Tuning Guide

Your installation can evaluate the use of the other available tools, such as PI trace, PSB trace,
and Fast Path trace and the many other available offerings in the IBM DB2 and IMS Tools
portfolio.

3.2 IMS Monitor

The IMS Monitor, which is integrated into the IMS product, collects information about most
dispatchable events in the IMS system, including Fast Path events starting with IMS Version
7. It is the primary tool for tuning the IMS system, analyzing application programs, validating
database design, and monitoring system performance. It is also a means of inferring the
effect on IMS of the interaction of the hardware and software components of the total system.
The IMS Monitor collects its data while the online IMS system is in operation. The monitor can
be started and stopped by means of IMS commands from the IMS master terminal. More
details on the /TRACE command can be found in the IMS Version 9 Operations Guide,
SC18-7830.

Table 3-2 on page 22 lists most of the report titles and the most important fields (by no
means, all inclusive) from the DFSUTR20 reports.

IMS
Performance
Analyzer
(IMS PA)

Program
product -
5655-E15

IMS Performance Analyzer processes
IMS log and monitor data to provide
enhanced summary and detailed
reports on system and program
performance.

IBM IMS Performance
Analyzer for z/OS
User’s Guide,
SC18-9778

IBM Tivoli
OMEGAMON
XE for IMS on
z/OS

Program
product -
5698-A39

IBM Tivoli OMEGAMON XE for IMS on
z/OS is a remote monitoring agent that
resides on z/OS managed systems. It
assists you in anticipating performance
problems and warns you when critical
events take place on your systems.
With Tivoli OMEGAMON XE for IMS on
z/OS, you can set threshold levels and
flags as desired to alert you when the
systems reach critical points.

Using IBM Tivoli
OMEGAMON XE for
IMS on z/OS,
GC32-9351

IBM IMS
Connect
Extensions for
z/OS

Program
product -
5655-K48

IMS Connect Extensions provides a
new level of control, enabling users to
easily monitor, manage, tune, and
secure IMS Connect for z/OS as it
opens and closes TCP/IP sockets and
routes transactions.

IMS Connect
Extensions for z/OS
User’s Guide,
SC18-7255

IBM IMS
Buffer Pool
Analyzer

Program
product -
5697-H77

IMS Buffer Pool Analyzer provides
statistical analysis that helps
you determine the impact of changes
to IMS online and batch job buffer
pools.

IMS Buffer Pool
Analyzer for z/OS
User’s Guide,
SC18-7068

Tool Type Description Documentation

Chapter 3. Monitoring tools 21

Table 3-2 IMS Monitor reports

Key report fields Commentsa

 Buffer pool statistics

Message
queue pools
report

Number of immediate fetch (I/F) I/Os
Number of directory I/O operations
Number of times blocks washed for FRE

TM

Database
buffer pools
report

Number of read-I/O requests
Number of blocks written by purge
Number of locate calls waited due to busy ID
Number of locate calls waited due to buffer busy wrt
Number of locate calls waited due to buffer busy read
Total number of I/O errors for this subpool

DB and DBCTL

VSAM buffer
pool report

Number of Times Ctrl Interval Requested Already in Pool
Number of Ctrl Intervals Read from External Storage
Number of VSAM Writes Initiated by IMS/ESA®
Number of VSAM Writes to Make Space in the Pool

DB and DBCTL

Message
format buffer
pool report

Number of I/F I/Os
Number of times blocks washed for FRE
Quotient

TM

 General reports

Latch conflict
statistics
report

LOGL Contentions TM, DB, and
DBCTL

General
IWAIT time
events report

Mean IWAIT Time TM, DB, and
DBCTL

Region and
jobname
report

None TM, DB, and
DBCTL

Region summary

Scheduling
and
termination
section

Elapsed Time Mean
Not IWAIT Time(Elapsed - IWAIT) Mean

TM, DB, and
DBCTL

Schedule to
first call
section

Elapsed Time Mean TM and DBCTL

Elapsed
execution
section

Elapsed Time Mean TM, DB, and
DBCTL

DL/I calls
section

Elapsed Time Mean
Not IWAIT Time(Elapsed - IWAIT) Mean
IWT/Call

TM, DB, and
DBCTL

Idle for intent
section

Elapsed Time Mean TM, DB, and
DBCTL

Checkpoint
section

Elapsed Time Mean
Not IWAIT Time(Elapsed - IWAIT) Mean

TM, DB, and
DBCTL

22 IMS Performance and Tuning Guide

Region
occupancy
section

Percentage TM, DB, and
DBCTL

Region IWAIT

Report is one per
region.

Scheduling
and
termination
section

IWAIT Time Mean
Function

TM, DB, and
DBCTL

DL/I calls
section

IWAIT Time Mean
Function
Module

TM, DB, and
DBCTL

Checkpoint IWAIT Time Mean
Function

TM, DB, and
DBCTL

Programs by region

Report is one per
region.

Elapsed Execution Time Mean TM, DB, and
DBCTL

Scheduling End to First Call Time Mean TM, DB, and
DBCTL

Program summary

Calls/Tran
I/O IWAITs / Call
CPU Time / Sched
Elapsed Time / Sched
Sched to 1st Call / Sched
Elased Time / Trans

TM, DB, and
DBCTL

Program I/O

Report is one per
PSB.

IWAITS
IWAIT Time Mean
DDN/Func

TM, DB, and
DBCTL

Communication summary

Elapsed Time Mean
Not IWAIT Time Mean

TM

Communication IWAIT

IWAIT Time Total
IWAIT Time Mean
Blksize

TM

 Line functions

Chapter 3. Monitoring tools 23

Example 3-1 shows one VSAM buffer pool statistics. Each VSAM buffer pool defined in
DFSVSMxx member has its report section. The most important indicator for buffer pool
performance is “VSAM Wrts to make space.” It should always be 0. “Buffer Pool Read I/O
Rate” is divided by transaction rate, which helps you to understand which pool is most
affected or needs adjusting. “Hit Ratio” is not always an accurate indicator for random access.
For additional reference, see IMS Version 9 Utilities Reference: Database Manager and
Transaction Manager, SC18-7833. The IBM IMS and DB2 Tools portfolio includes a product,
IMS Buffer Pool Analyzer (program number 5697-H77), that might be helpful in this analysis.

Example 3-1 IMS Monitor VSAM Buffer Pool report

IMS MONITOR *** BUFFER POOL STATISTICS *** TRACE START 2006 250, 18:39:19 TRACE STOP 2006 250, 18:49:12 PAGE 0013

 V S A M B U F F E R P O O L

 FIX INDEX/BLOCK/DATA N/N/N
 SHARED RESOURCE POOL ID XXXX
 SHARED RESOURCE POOL TYPE D
 SUBPOOL ID 5
 SUBPOOL BUFFER SIZE 8192
 NUMBER HIPERSPACE BUFFERS 0
 TOTAL BUFFERS IN SUBPOOL 200

 18:39:19 18:49:12

Mean Receive Blksize
Max Receive Blksize
Mean Trans Blksize
Max Trans Blksize
Mean Interval
Max Interval

TM

 Transaction queuing

Number Dequeued
On Queue When Scheduled Mean
Dequeued Mean

TM

 Reports

Intent Failure Summary
Pool Space Failure Summary
Deadlock Event Summary
Monitor Overhead Data

TM, DB, and
DBCTL

Run profile

Number of Transactions Per Second
Number of Dl/I Calls Per Transaction
Number of Message Queue Pool I/Os
Number of Format Buffer Pool I/Os
Ratio of Program Elapsed to DL/I Elapsed
Ratio of DL/I Elapsed to DL/I IWAIT

TM, DB, and
DBCTL

Call summary

Report is one per
PSB.

IWAITs/Call
Elapsed Time Mean
Not IWAIT Time Mean

TM, DB, and
DBCTL

a. Reports marked TM apply to IMS Monitor data.
Reports marked DB apply to IMS DB Monitor data.
Reports marked DBCTL apply to DBCTL users.

24 IMS Performance and Tuning Guide

 START TRACE END TRACE DIFFERENCE
 NUMBER OF RETRIEVE BY RBA CALLS RECEIVED BY BUF HNDLR 3 19 16
 NUMBER OF RETRIEVE BY KEY CALLS 21321 24316 2995
 NUMBER OF LOGICAL RECORDS INSERTED INTO ESDS 0 0 0
 NUMBER OF LOGICAL RECORDS INSERTED INTO KSDS 1434 11818 10384
 NUMBER OF LOGICAL RECORDS ALTERED IN THIS SUBPOOL 0 0 0
 NUMBER OF TIMES BACKGROUND WRITE FUNCTION INVOKED 0 0 0
 NUMBER OF SYNCHRONIZATION CALLS RECEIVED 1434 11818 10384
 NUMBER OF WRITE ERROR BUFFERS CURRENTLY IN THE SUBPOOL 0 0 0
 LARGEST NUMBER OF WRITE ERRORS IN THE SUBPOOL 0 0 0
 NUMBER OF VSAM GET CALLS ISSUED 22775 36278 13503
 NUMBER OF VSAM SCHBFR CALLS ISSUED 0 0 0
 NUMBER OF TIMES CTRL INTERVAL REQUESTED ALREADY IN POOL 14016 16559 2543
 NUMBER OF CTRL INTERVALS READ FROM EXTERNAL STORAGE 8878 19848 10970
 NUMBER OF VSAM WRITES INITIATED BY IMS/ESA 1458 12097 10639
 NUMBER OF VSAM WRITES TO MAKE SPACE IN THE POOL 0 0 0
 NUMBER OF VSAM READS FROM HIPERSPACE BUFFERS 0 0 0
 NUMBER OF VSAM WRITES TO HIPERSPACE BUFFERS 0 0 0
 NUMBER OF FAILED VSAM READS FROM HIPERSPACE BUFFERS 0 0 0
 NUMBER OF FAILED VSAM WRITES TO HIPERSPACE BUFFERS 0 0 0

 QUOTIENT : TOTAL NUMBER OF VSAM READS + VSAM WRITES = 7.55
 __
 TOTAL NUMBER OF TRANSACTIONS

Example 3-2 shows important summary information for each dependent region that was
active during the time period that the monitor trace was on. The “Elapsed Time Mean” on
each report section is one of the important indicators of system performance. Of course, the
percentage of the “Region Occupancy” is another key indicator.

Example 3-2 Region Summary report

IMS MONITOR *** REGION SUMMARY *** TRACE START 2006 250, 18:39:19 TRACE STOP 2006 250, 18:49:12 PAGE 0019

 ELAPSED TIME......... NOT IWAIT TIME(ELAPSED-IWAIT)
 OCCURRENCES TOTAL MEAN MAXIMUM TOTAL MEAN MAXIMUM
 ___________ _____ ____ _______ _____ ____ _______
SCHEDULING AND TERMINATION
__________ ___ ___________

SCHEDULE TO FIRST CALL
________ __ _____ ____
**REGION 1 1 48314669 48314669 48314669
**REGION 2 1 42696868 42696868 42696868
**REGION 3 1 46601395 46601395 46601395
**REGION 4 1 44136700 44136700 44136700
**REGION 5 1 45194561 45194561 45194561
**TOTALS 5 226944193 45388838
ELAPSED EXECUTION
_______ _________
**REGION 1 1 270851515 270851515 270851515
**REGION 2 1 275004759 275004759 275004759
**REGION 3 1 478134880 478134880 478134880
**REGION 4 1 548731226 548731226 548731226
**REGION 5 1 547673367 547673367 547673367
**TOTALS 5 2120395747 424079149
DL/I CALLS IWT/CALL
____ _____ ________
**REGION 1 2762 19399174 7023 372895 19399174 7023 372895 0.00
**REGION 2 14848 22430506 1510 278980 17016470 1146 278980 0.74
**REGION 3 1849 12210030 6603 357590 12210030 6603 357590 0.00
**REGION 4 31152 82452077 2646 212657 12980967 416 63772 2.70
**REGION 5 98838 40940175 414 42517 11069873 112 37571 0.62
**TOTALS 149449 177431962 1187 72676514 486 1.04
IDLE FOR INTENT
____ ___ ______
 NONE
CHECKPOINT
__________ 1 19670 19670 19670 19670 19670 19670
REGION OCCUPANCY
______ _________
**REGION 1 53.8%
**REGION 2 53.5%
**REGION 3 88.5%
**REGION 4 99.9%
**REGION 5 99.9%

Chapter 3. Monitoring tools 25

3.3 IMS Performance Analyzer

The IMS Performance Analyzer (IMS PA) is a performance and analysis tool that processes
data from IMS system logs, IMS Monitor data sets, and IMS Connect Extensions Event
Collector journal files.

Here are a few of the highlights of IBM IMS Performance Analyzer for z/OS, Version 4.1:

� Provides comprehensive performance analysis and tuning assistance for IMS

� Delivers end-to-end transit analysis for all types of transaction workloads

� Provides a complete picture of the transaction life cycle through IMS Connect and IMS
logs

� Manages reporting requirements across the IMS enterprise through ISPF dialog or batch

� Offers DBRC Log selection for quick and easy log report requests

� Provides comprehensive IMS Monitor reporting, including Fast Path, which is not reported
with DFSUTR20

IMS Performance Analyzer gives you an opportunity to select or merge IMS log data sets you
need, so it is easy to generate any report in any given time period. You can customize how
detailed your reports are, look for IMS performance trends, and try to foresee or avoid IMS
performance problems based on your performance reports.

For some performance study cases, you might need to analyze the Monitor trace to get a
better understanding of the whole transaction flow. The Program Trace report is a detailed
trace of the events associated with a program schedule. There is a detailed line of information
for each call and, optionally, each IWAIT occurring during the program schedule. There is also
a summary of schedule activity.

To obtain the Program Trace report, select Program Trace in the Monitor Report Set and
specify the following options for each trace required:

� Date and time range of the trace

� At least one of the following:

– Program (PSB) name to be traced
– Transaction code to be traced
– Region to be traced

� Type of trace: either Short, Long, or Summary

� Schedule limit: the maximum number of schedules to be traced

Example 3-3 shows the output of the PAMON PGMTRACE option.

Example 3-3 PAMON PGMTRACE option

Relative Time Pgm Time Call ST PCB Feedbck Mod IWT DDname IWT Elapsed Breakdown of Call Time Call Elap
 ___________ _______________________
 Secs.Mil.Mic Sc.Mil.Mic No. PCBname Func Cd Segname Lvl ULE (# IWAITs) Sc.Mil.Mic Pct CPY Pct DLA Pct IWT Sc.Mil.Mic
 3.238 0.037 10 HISTDB GN GE MYROOT 01 .00% 100.00% .00% 0.007
 4.470 1.225 11 HISTDB ISRT HIST 02 1 1.112 .00% 100.00% 86.34% 1.288
 4.603 FPD DEDB HISTDD 1.112
 24.009.143 24.003.385 12 HISTDB GU DEP02 02 1 0.958 .00% 100.00% 81.67% 1.173
 24.009.313 FPD DEDB HISTDD 0.958
 24.010.332 0.016 13 HISTDB GN GE MYROOT 01 .00% 100.00% .00% 0.009
 24.010.374 0.033 14 HISTDB GHU DEP02 02 .00% 100.00% .00% 0.005

26 IMS Performance and Tuning Guide

3.4 File Select and Formatting Print utility (DFSERA10)

The File Select and Formatting Print utility can be used with IMS and its related databases. Its
primary function is to assist in the examination and display of data from the IMS log data set.
The utility can:

� Print or copy an entire log data set.

� Print or copy from multiple log data sets based on control statement input.

� Select and print log records on the basis of sequential position in the data set.

� Select and print external trace data sets.

� Select and print log records based on data contained within the record itself, such as the
contents of a time, date, or identification field.

� Allow exit routines to perform special processing of selected log records. For example,
DFSERA30 is an exit that formats deadlock trace records.

The File Select and Formatting Print utility uses a series of control statements to define the
input and output options, selection ranges, and various field and record selection criteria.

You can use Knowledge-Based Log Analysis (KBLA) functions for most analysis that
DFSERA10 provides. KBLA was introduced with IMS Version 9.

3.5 Log Transaction Analysis utility (DFSILTA0)

The IMS Log Transaction Analysis utility collects information about individual transactions
from the IMS system log. It generates a report that identifies each transaction, the class and
priority of the transaction, and the length of time the transaction is in the system. It then
calculates the total transaction response time. The definition of response time in this report is
the sum of the time on the input queue, the processing time, and the time on the output
queue. This information enables an installation analyst to isolate problem areas in the IMS
system. It can be used to quickly identify problem transactions and to evaluate or aid in
setting up class-scheduling algorithms.

Execution-time parameters include the specification of a start time and the subsequent
number of checkpoints to be included from the log. To correspond with the IMS Monitor data,
the report can be run to process only the portion of the IMS log that was produced at the
same time. The program can also produce another IMS log that includes only a subset of the
input log records, which might expedite some subsequent analysis.

When DFSILTA0 is run as a batch job, execution time and CPU utilization are high, and the
report can be long. Therefore, subsetting should be done to limit the use of system resources.
If wait-for-input (WFI) transactions have been processed with a high processing-limit count
(greater than 1 000), DFSILTA0 can execute for a very long time and occupy a large amount
of virtual and real storage as it builds in-storage tables for all transactions that are processed
at a single scheduling.

DFSILTA0 and the Statistical Analysis utility (DFSISTS0) have been rewritten for IMS Version
10. This was done to improve the performance, simplify the execution, and lift several
restrictions. DFSILTA0 and DFSISTS0 no longer require the Log Merge utility to be run in
order to merge the input from multiple IMS systems. Both of these utilities also have added
support for shared queues and non-recoverable transactions. Also, the execution of the
DFSISTS0 utility has been simplified by replacing a previously six step job with a single step
job.

Chapter 3. Monitoring tools 27

3.6 Knowledge-Based Log Analysis (KBLA)

The Knowledge-Based Log Analysis (KBLA), which was introduced in IMS V9, is a set of
tools and utilities to assist with finding and interpreting information about the IMS log or IMS
trace data sets. The ISPF panel driven user interface is designed to simplify JCL job creation
and to prevent JCL errors. All the necessary control statements are created in a syntactically
correct form. KBLA reduces the need to reference the manuals and eliminates the work
involved in creating jobs for extracting log records. The utility also includes a new set of log
formatting routines that allows the user to extract an interpreted version of the IMS log
records, producing easy to read output. Key data for each log record is interpreted in plain
English, which relieves you from having to research the meaning of each flag or field.

Components of KBLA:

� A few new log analysis utilities documented in IMS Version 9 Utilities Reference: System,
SC18-7834

� ISPF interface to create JCL and control statements for those utilities and for preexisting
log analysis utilities

� ISPF interface to select, group, and sort log data sets

� ISPF interface to perform environment-related tasks

KBLA processes any and all log records. Example 3-3 only lists the log records which can be
formatted by the “K” formatting option under KBLA Log Record Formatting.

Table 3-3 Log records analyzed

Record Description Record Description

X'01' Message queued from a CNT X'33' A record was released by the
queue manager

X'02' A condensed command record X'34' A message was cancelled

X'03' Message queued by a DL/I call X'35' A message was enqueued or
re-enqueued

X'06' IMS was started or stopped, or
FEOV was issued

X'36' A message was dequeued,
saved, or deleted

X'07' Program termination X'37' Sync point processing

X'08' Program scheduled X'38' A message was put back on the
queue after application abend

X'10' A security violation occurred X'39' The output queue was freed
during cleanup processing of a
RELEASE call

X'11' A conversational program started X'40' Checkpoint records

X'12' A conversational program
terminated

X'42' OLDS switch or a checkpoint was
taken

X'16' A /SIGN command successfully
completed

X'48' Padding records

X'20' Database data set open X'50' Database update

X'21' Database data set close X'55’ External subsystem information

28 IMS Performance and Tuning Guide

Figure 3-1 shows the overview of KBLA ISPF panel structure.

Figure 3-1 KBLA panel structure

Beyond log searching and formatting, there are also utilities for helping to find and diagnose
performance-related issues. These utilities include IMS Knowledge-Based Log Analysis,
MSC Link Performance Analysis, Statistics Record Analysis, Trace Entry Analysis, IRLM Lock
Trace Analysis, DBCTL Transaction Analysis, and Log Processing Rate Analysis. In this
chapter, we focus on MSC Link Performance Analysis, Statistics Record Analysis, IRLM Lock
Trace Analysis and DBCTL Transaction Analysis, and the use of the utilities.

IMS Knowledge-Based Log Analysis gives you summary statistical information from the log
data sets or based on specified search criteria.

The summary function includes:

� First and last LSN in the log

� Timestamp (UTC) of the first and last log record

� Total number of log records in the log data set

� Presence of internal traces record, system restarts, dump log record, and system
checkpoint.

� Number of log records present for each record ID

� System configuration

� Transaction, program, and database record instances

X'24' The buffer handler detected an
I/O error

X'56' IMS external subsystem log
records

X'29' HALDB online reorganization X'59' Fast Path Records

X'31' A GU was issued for a message X'63' Log session initiation and
termination

X'32' A message was rejected X'72' Dynamic terminals sign on or sign
off

Record Description Record Description

Main KBLA ISPF Menu
(DFSKBSRT)

Option 0
KBLA

Environment
Maintenance

(DFSKBPM0)
Setting up KBLA

Option 1
IMS Log Utilities

(DFSKBPM1)

Option 2
IMS Log Formatting

(DFSKBPM2)

Option 3
IMS Log Dataset

Summary
(DFSKBPM3)

Option 4
IMS Knowledge Based

Analysis
(DFSKBPM4)

Option 5
Log Selection
(DFSKBML5)
Choosing Logs

Option 6
User Supplied

Utilities
External Log

Processing
Through KBLA

1.1. IMS Log Transaction Analysis
1.2. IMS Fast Path Log Analysis
1.3. IMS Statistical Analysis
1.4. IMS Log Merge Utility
1.5. IMS Log Recovery Utility
1.6. Program Isolation Trace Report
1.7. IMS Records User Data Scrub

2.1. IMS Resources Formatting
2.2. IMS Subcomponent Log Filtering
2.3. KBLA Log Record Formatting
2.4. IMS Trace Formatting
2.5. Snap/Pseudo-Abend Record
Formatting

4.1. IMS Knowledge-Based Log
Analysis
4.2. MSC Link Performance Analysis
4.3. Statistics Log Record Analysis
4.5. IRLM Lock Trace Analysis
4.6. DBCTL Transaction Analysis
4.7. Log Processing Rate Analysis

4.4. Trace Entry Analysis

4.4.1.OTMA/RRS Wait Trace
Analysis
4.4.2. Trace Entry Filtering

Chapter 3. Monitoring tools 29

The Log Processing Rate Analysis calculates the rate at which log records are generated.
The average length of each type of log record is calculated. The log record generation rates
are expressed in records per second and bytes per second for individual log record types,
and for log record subtypes if such granularity is requested.

The log rate analysis can include the following:

� Statistics for record types
� Statistics for each record subtype within type

On an IMS subsystem, the log record generation rate can vary depending on system activity.
An option is available to sample the system logging rate at specified time intervals and to
track differences in system activity.

3.6.1 MSC Link Performance Analysis

The MSC Link Performance Analysis utility (DFSKMSC0) uses the MSC link trace written to
the log by the /TRA SET ON LINK n command. Multiple links can be traced and used as input
to the program. The IMS MSC link trace log records provide information about link response
times, which can be used to help isolate performance problems with MSC links.

Input for DFSKMSC0
The input is:

� IMS log:
– OLDS or SLDS
– Link trace records (x'6701') captured by /TRA SET ON LINK n

You can trace multiple links, but use this capability carefully, because the amount of data can
be hazardous to your logs. Currently, only logs from a single system should be used in each
execution.

Output for DFSKMSC0
The output of the formatting program shows a line for each link send or receive containing
three different delta times. The output also includes the actual time that the operation
completed so that send or receive can be matched against the full trace data for further
analysis if necessary.

3.6.2 Statistic Log Record Analysis

The Statistic Log Record Analysis utility (DFSKDVS0) processes the X'45' log records
generated at each IMS simple or statistics checkpoint and formats a report showing the
detailed statistical information between each pair of checkpoints. This information can be
used to look for bottlenecks within the IMS system or to detect trends in internal resource
usage that can help you to determine if tuning is necessary. There are no IRLM statistics for
the statistics checkpoint (/CHE STATISTICS command). DFSKDVS0 can be used in DB/TM,
DBCTL, or DCCTL environments.

Input for DFSKDVS0
The input is:

� An IMS log:
– OLDS or SLDS
– At least two sets of checkpoint records (x'45') on the logs

30 IMS Performance and Tuning Guide

Output for DFSKDVS0
The output is:

� A report for each checkpoint interval

Invoking statistics formatting
Figure 3-2 is an example of the Statistic Log Record Analysis panel in the KBLA panel-driven
interface.

Figure 3-2 DFSKDVS0 invoking panel

Statistics record output and interpretation
Each x’45’ statistics record has a report as listed below. You should focus on the important
values you choose for your environment and look for trends and anomalies over extended
periods:

� Statistics information (header page)
� Qpool statistics
� Format pool statistics
� OSAM subpool starts
� VSAM subpool starts
� Variable pools
� Scheduling statistics
� Logger statistics
� PI statistics
� Latch statistics
� CBT pools
� Receive any statistics
� Fix storage pool
� Dispatcher statistics
� Dynamic SAP® statistics
� RACF® signon statistics
� IRLM subsystem statistics
� IRLM system statistics

Example 3-4 shows the AOIP fix storage pool. You might need to specify an additional size to
avoid GETMAIN and FREEMAIN requests when values under OVERSIZE keep increasing
over time.

Example 3-4 Fix Storage Pool

FIXED STORAGE POOL: AOIP
CURRENT POOL SIZE : 22912
MAX POOL SIZE : 40120
BYTE IN OVERSIZE: 0

Chapter 3. Monitoring tools 31

OVERALL POOL SIZE : 48752
SUBPOOL NUMBER : 0
ABOVE/BELOW 16M : ABOVE
BUFFERSET 01 02 03 04 05 06 07 08 OVERSIZE
BUFFER SIZE (BYTES) 56 144 264 584 1056 2104 4200 32776
PRIMARY BLK BUFFERS 50 500 100 32 16 8 4 4
INITIAL (Y/N) Y N N N N N N N
SECONDARY BLK BUFFS 50 1500 100 32 8 4 2 2
MAX BLK SINCE INIT 1 0 0 1 2 0 0 0
MAX BLK SINCE CHKPT 1 0 0 1 1 0 0 0 0
MIN BLK SINCE CHKPT 1 0 0 1 0 0 0 0 0
AVERAGE BLKS ALLOC 0 0 0 0 1 0 0 0
MAX BUF SINCE INIT 0 0 0 2 19 0 0 0 0
MAX BUF SINCE CHKPT 0 0 0 2 3 0 0 0
MIN BUF SINCE CHKPT 0 0 0 2 0 0 0 0
AVERAGE BUFFS ALLOC 0 0 0 0 1 0 0 0
TOTAL GET REQUESTS 0 0 0 0 207 0 0 0
GET REQ PER SECOND .00 .00 .00 .00 .58 .00 .00 .00 .00
PGLOAD REQUIRED 0 0 0 0 0 0 0 0 0
PGLOAD-IWAIT REQD 0 0 0 0 0 0 0 0 0
BLK ALLOCATE REQD 0 0 0 0 1 0 0 0 0
BLKS RELEASED 0 0 0 0 2 0 0 0 0
CURRENT BLOCK COUNT 0 0 0 0 207 0 0 0 0
CURRENT BUFFER COUNT 0 0 0 0 239 0 0 0
WASTED STORAGE 0 0 0 0 7452 0 0 0 0
AVERAGE REQ SIZE 0 0 0 0 1020 0 0 0
UPPER LIMIT REACHED 0 0 0 0 0 0 0 0 0
LARGER BUFF SIZE USED 0 0 0 0 0 0 0 0 0

3.6.3 DBCTL Transaction Analysis

The DBCTL Transaction Analysis utility (DFSKDBC0) combines some of the information
found in the DBFULTA0 and DFSILTA0 utilities plus additional DBCTL specific information. By
default, the output is presented in termination (sync point) time order, but it can be sorted by
specific key fields to help identify potential performance problems.

Input for DFSKDBC0
The input is:

� An IMS log:
– OLDS or SLDS
– x'07', x'08', x'5937', x'5938' records
– Additional schedule and execution information specifically written for DBCTL

Output for DFSKDBC0
The output is:

� A report for each transaction or BMP termination

Invoking DBCTL report
Figure 3-3 on page 33 is an example of the DBCTL Transaction Analysis panel in the KBLA
panel-driven interface.

32 IMS Performance and Tuning Guide

Figure 3-3 DFSKDBC0 invoking panel

DBCTL transaction output and interpretation
Example 3-5 on page 34 shows the output of a DBCTL transaction. Each line shows one PSB
from schedule to termination. The information related to that transaction is:

� PSB name
� Region type
� Total elapsed time
� Transaction schedule time (Termination time = schedule time + total elapsed time)
� Elapsed time in scheduling
� Time waiting for intent
� Time waiting for pool space
� Total full function calls
� Total DL/I and I/O count
� DL/I I/O time
� Time waiting for locks (including both full function and Fast Path databases)
� Total DEDB calls
� DEDB get and put calls
� Overflow buffer used
� DEDB buffer waits
� NBA buffers used
� Buffers sent to OTHREAD
� Buffers used for SDEP
� CI lock waits
� UOW lock waits
� VSO reads from data space
� VSO reads from DASD
� Updates to VSO data space
� Sync failure codes

So you can request the sort sequence by the elapsed time (ELAP) to look for long running
transactions or sort on lock wait time (LWT) for locking problems.

Chapter 3. Monitoring tools 33

Example 3-5 DBCTL transaction analysis report

COLUMN HEADING EXPLANATIONS:
 SCHEL - ELAPSED TIME IN SCHEDULING INT - TIME WAITING FOR INTENT PWT - TIME WAITING FOR POOL SPACE
 DLI - TOTAL FULL FUNCTION CALLS IOC - DLI I/O COUNT IOT - DLI I/O TIME LWT - TIME WAITING FOR LOCK
 DEC - TOTAL DEDB CALLS DEG - DEDB GET CALLS DEP - DEDB PUT CALLS
 OVF - OVERFLOW BUFFERS USED BWT - DEDB BUFFER WAITS NBA - NBA BUFFERS USED
 UPD - BUFFERS SENT TO OTHREAD SDP - BUFFERS USED FOR SDEP CLK - CI LOCK WAITS
 ULK - UOW LOCK WAITS VRD - VSO READS FROM DATA SPACE VDR - VSO READS FROM DASD
 VWR - UPDATES TO VSO DATA SPACE S/F - SYNC FAILURE CODE - SEE UTILITIES REFERENCE:SYSTEM DBFULTA0
1PSBNAME SUBSYS R RGN ELAP SCHED_TIME SCHEL INT PWT DLI IOC IOT LWT DEC DEG DEP OVF BWT NBA UPD SDP CLK ULK VRD VDR VWR S
 ID T NBR SS.T HH:MM:SS.T MS MS MS # # MS MS # # # # # # # # # # # # # F
 PCR0F0 CI1CSAC3 D 59 .0 08:00:41.4 25 0 0 0 0 0 0 23 4 0 0 0 10 1 0 0 0 6 0 0

3.6.4 IRLM Lock Trace Analysis

The IRLM Lock Trace Analysis consists of three programs (DFSKLTA0, DFSKLTB0, and
DFSKLTC0) that run serially to perform IRLM Lock Trace Analysis. DFSKLTA0 is run first to
create the control file of global data management block (DMB) numbers and their respective
database names. DFSKLTB0 is then used to create the lock wait detail and summary records.
DFSKLTC0 formats and prints the information and creates the optional output data set.

Input for DFSKLTx0
The input is:

� IMS lock trace data

– x’67FA’ log records are needed either from the external trace data set DFSTRAxx,
OLDS, or SLDS

� RECON

Output for DFSKLTx0
The output is:

� IRLM lock request report on DMB name order
� IRLM lock request report on wait time order
� IRLM lock request report on request completion order

Invoking statistics formatting
Figure 3-4 on page 35 is an example of the IRLM Lock Trace Analysis panel in the KBLA
panel-driven interface.

34 IMS Performance and Tuning Guide

Figure 3-4 DFSKLTx0 invoking panel

Statistics record output and interpretation
Example 3-6 shows the lock request report by wait time order. Normally, you can start from
here (unless you are looking for a specific database) and quickly see how much time was
spent waiting for locks and which databases are involved. The example shows 8.247 seconds
were spent on the database ITEMDB during a 30 second trace elapsed time.

Example 3-6 Lock trace analysis output - Wait time order

Suspended IRLM Lock Requests Summary Report - Wait Time Order Page 001
Trace Date = 09/12/2006 Trace Start Time = 13:07:34 Trace End Time = 13:08:04
Trace Elapsed Time (secs) = 30
Trace Input DSN = IMSPSA.IM1B.DFSTRA02

 Database DS Lock Req Wait Not Int Total Average Maximum
 Name Id Count Count Count Time Time Time

 ITEMDB 01 2163 1905 1905 8.247 0.004 0.04
 CUSTDB 01 951 662 630 2.712 0.004 0.02
 NORDDB 01 1117 959 959 1.960 0.002 0.01
 ORDRDB 01 491 407 407 1.491 0.003 0.07
 ORDRSI 01 1013 756 756 1.448 0.001 0.02

Example 3-7 on page 36 shows the detailed report by the request completion order. Based on
the DB name you knew from the previous report, you might find a control record or root
segment RBA causing the contention in this report.

Chapter 3. Monitoring tools 35

Example 3-7 Lock trace analysis output - Request completion order

Suspended IRLM Lock Requests Report - Req Comp Order Page 0001
Trace Date = 09/12/2006 DSN = IMSPSA.IM1B.DFSTRA02
Lock Request Lock Request ----Wait----- PST --Lock-- -------Resource------- Flag --IRLM--- --------Call--------- Trace
 Start Time End Time Elapsed Type Num Type Lvl DB DS RBA/HASH S RCFB TRAC Type Num Time Seq#

13:07:34.334 13:07:34.334 0.000 F 002 BIDP 4 CUSTDB 01 149B8000 P CPKF 0000 08C0 REPL 191 13:07:34.334 042A
13:07:34.334 13:07:34.334 0.000 F 002 FPCI 8 HISTDB 01 00011FC0 F K 0440 08C0 0442
13:07:34.334 13:07:34.334 0.000 F 001 FPCI 8 ORDLDB 01 000FC660 F K 0440 08C0 0463
13:07:34.334 13:07:34.334 0.000 F 001 FPCI 2 ITEMDB 01 00004790 F 0000 08C0 0471
13:07:34.334 13:07:34.334 0.000 F 001 FPCI 8 STCKDB 03 000100C0 F K 0440 08C0 048B

3.7 IBM Tivoli OMEGAMON XE for IMS on z/OS

IBM Tivoli OMEGAMON XE for IMS on z/OS, product number 5698-A39, is a monitoring tool
under the IBM Tivoli Monitoring Services product portfolio.

IBM Tivoli OMEGAMON XE for IMS on z/OS helps you optimize the performance and
availability of your IMS systems. From a single point of control, you can view comprehensive
information and analysis across multiple IMS subsystems, or across your IMSplex
environment. With Tivoli OMEGAMON XE for IMS on z/OS, you can collect and summarize
information about key resources, such as enqueue, I/O, CPU, paging rates, pool storage, and
buffer pool metrics. The product provides both granular and system-wide views of your IMS
operations, giving you comprehensive information and analysis across multiple IMS
subsystems or across your IMSplex environment.

Tivoli OMEGAMON XE for IMS on z/OS has the following features:

� Views IMS pools showing utilization, pool storage sizes, and amount of free blocks

� Auto discovers IMS and Internal Resource Lock Manager (IRLM) subsystems

� Lets you view Coupling Facility statistics to identify factors affecting the performance of
IBM Parallel Sysplex environments

� Monitors workload balancing using shared queues support and data sharing to minimize
the impact of locks on shared databases

� Tracks and optimizes both resource usage and transaction processing

� Monitors resource usage for IMS regions with detailed metrics, such as CPU usage, I/O
activity, storage, paging, and EXecute Channel Program (EXCP)

OMEGAMON XE for IMS divides monitoring among IMS, IMS Connect monitoring, and
IMSplex monitoring. In an IMSplex environment, OMEGAMON XE for IMS can be used to
monitor the IMSplex Coupling Facility structure sizes, OSAM/VSAM cache, and IRLM lock
structures.

3.7.1 OMEGAMON XE for IMS in IMSplex environment

All IMSplex information can be viewed under the IMSplex node within the Tivoli Enterprise™
Portal (TEP). The TEP navigation view displays each IMS Data Sharing and Shared Queues
group active from all of the monitored LPARs. OMEGAMON XE for IMS automatically
discovers all IMSplex information and displays this group information within the TEP under
the IMSplex node without any additional user configuration.

36 IMS Performance and Tuning Guide

Figure 3-5 on page 37 shows a TEP screen, where there are two data sharing groups active:
IMS9 and IRLM91. Coupling Facility statistics are displayed for the IRLM91 data sharing
group.

Along with connection information (connection status, connected jobname, and Coupling
Facility name), the cache structure statistics are displayed. The Directory Entries (allocated,
in use, and percentage of use) are displayed as are the Data Entries (elements) (allocated, in
use, and percentage of use).

Figure 3-5 TEP screen showing two data sharing groups: IMS9 and IRLM91

Statistics to help determine if the lock structure has adequate space are also displayed.
Record List Entries allocated, in use, and Percentage of use are shown. Some of these
values require scrolling to the right (Figure 3-6 on page 38).

Chapter 3. Monitoring tools 37

Figure 3-6 TEP screen showing lock structure statistics

A particularly powerful feature of OMEAGAMON XE is the Data Warehousing feature. Using
this feature, data can be collected at specified intervals and warehoused for a user-specified
amount of time. Further data can be summarized at hourly, daily, weekly, monthly, quarterly,
and yearly intervals. Applying this feature to Coupling Facility structure statistics, you can
examine structure trends, for example, over the past 24 hours or the past week between the
hours of 6 am and 5 pm.

Figure 3-7 on page 39 displays the Data Warehousing selection criteria. This request displays
the last 24 hours worth of data.

38 IMS Performance and Tuning Guide

Figure 3-7 Data Warehousing selection criteria specification window

A row is displayed for each structure for each collection interval, as shown in Figure 3-8 on
page 40. The collection interval is established during Data Warehouse setup. A unique
interval can be specified for each work space.

Chapter 3. Monitoring tools 39

Figure 3-8 Data Warehouse feature showing structure statistics at collection intervals

3.7.2 Using OMEGAMON XE for IMS for monitoring IMS Connect

IMS Connect support within OMEGAMON XE for IMS is displayed by IMS Connect address
space under the LPAR on which it is executing within the Tivoli Enterprise Portal (TEP).
Figure 3-9 on page 41 shows several monitored IMS regions (I81C, I91A, and I91C) as well
as one monitored IMS Connect region (IMS9CCON).

40 IMS Performance and Tuning Guide

Figure 3-9 TEP screen for IMS Connect

OMEGAMON XE for IMS breaks the IMS Connect processing time into discreet response
time components. This response time breakdown allows the IMS Connect user to determine
where the response time bottlenecks exist. The IMS Connect processing time is broken down
into the following categories:

� Input Pre-OTMA
� Input Read Exit
� Input SAF
� Process OTMA
� Output Confirm
� Output Post-OTMA
� Output XMIT Exit

Further OMEGAMON use provides response time summaries by the following groupings:

� Transaction
� Client ID
� Datastore
� User ID
� IMS Connect Port

3.7.3 Additional references

IBM Tivoli OMEGAMON XE for IMS on z/OS was originally developed by Candle®
Corporation and became an IBM product when IBM acquired Candle. Candle products have
new IBM names, and during the transition period, some publications use the old names and
others use the new names. For example, some publications use the term CandleNet Portal,
and others use the new name Tivoli Enterprise Portal.

Chapter 3. Monitoring tools 41

For a mapping of previous Candle names and new IBM names, refer to:

http://www.ibm.com/software/tivoli/products/product-matrix.html

For more information about IBM Tivoli OMEGAMON XE for IMS on z/OS and other members
of the Tivoli Monitoring Services family, refer to:

http://www.ibm.com/software/tivoli/sw-atoz/indexO.html

3.8 IBM IMS Connect Extensions for z/OS

IMS Connect Extensions is an IBM DB2 and IMS Tools program product (program number
5655-K48) that extends and enhances the services of IMS Connect. The tool helps you tune
IMS and IMS Connect performance, perform problem determination, and better manage
workloads, user exits, and security.

For monitoring and tuning, IMS Connect Extensions provides the following features:

� Event recording and reporting

IMS Connect Extensions records details about IMS Connect internal events in journal data
sets. They give information about these main points:

– Performance and response time for IMS, IMS Connect, and user message exits

– Availability for datastore and ports

– Throughput information for different transaction types, for example, conversational,
non-conversational, and send only

– Resource availability

IMS Connect Extensions provides batch utilities to format and print the recorded events. It
also provides interfaces to the IMS Performance Analyzer and IMS Problem Investigator
products.

� Status Monitor

The IMS Connect Extensions Status Monitor displays the current activity status
information for an active IMS Connect system.

The Status Monitor presents information for the IMS Connect system, datastores, and
user message exits for various intervals over the previous hour. It also displays statistical
information across the active ports. It enables you to monitor and display IMS Connect
activity and utilization in real time.

If the Event Collection feature is active, IMS Connect Extensions continuously collects events
as incoming message requests are processed. The number and type of event records
collected varies depending on the collection level specified for the IMS Connect system as
follows:

� Level 0

Minimum level. Collects startup, shutdown, and some error events.

� Level 1

Accounting level. Collects Return from Exit events, OTMA timeout, and session error
events. This level provides accounting information in terms of the number of messages by
Transaction, User Exit, and so on.

� Level 2

Transit time reporting. Collects the minimum number of records to run simple transit time
reports.

42 IMS Performance and Tuning Guide

http://www.ibm.com/software/tivoli/products/product-matrix.html
http://www.ibm.com/software/tivoli/sw-atoz/indexO.html

� Level 3

Comprehensive performance analysis. Collects all TCP/IP read and write events, which
provides for analysis of TCP/IP activity.

� Level 4

Maximum level. Collects all event records.

Event records are first written to an Active Journal data set on DASD, and subsequently
archived to the Archive Journal data set on tape or DASD. After collection, the IMS Connect
Extensions Print utility provides event record report output. Detailed analysis and reporting is
provided by the IBM IMS Performance Analyzer.

For additional information about IMS Connect Extensions, refer to Chapter 11, “IMS Connect
Extensions”, in the IBM Redbook IMS Connectivity in an On Demand Environment: A
Practical Guide to IMS Connectivity, SG24-6794, and to the product manuals.

3.9 IBM IMS Buffer Pool Analyzer for z/OS

IBM IMS Buffer Pool Analyzer for z/OS is a program product (program number 5697-H77) in
IBM DB2 and IMS Tools portfolio. IMS Buffer Pool Analyzer provides more information than
just IMS database buffer pool hit ratios and I/O rates. It provides a way to determine the
impact of buffer pool changes before they are made. IMS Buffer Pool Analyzer provides
modeling facilities to help you make informed decisions about the addition of buffers to an
existing pool or sizing requirements for a new buffer pool. IMS Buffer Pool Analyzer can
analyze IMS OSAM and VSAM database buffer pools to provide statistical analysis about the
impact of changes, such as:

� Determining if additional buffers improve the performance of a given buffer pool

� Determining if reducing buffers impact the performance of a given buffer pool, allowing
better allocation of real storage resources

� Modeling buffer pool usage to estimate I/O rates for different numbers of buffers in each
pool

� Identifying which databases use each database subpool most heavily

� Providing I/O rates and buffering requirements for a specific database to facilitate buffer
pool changes required for changes to database structure (buffer size, access method, or
creation of a separate buffer pool for a given database)

� Performing “what if” scenario analysis, such as identifying the impact of splitting a specific
database into a new buffer pool

For additional information about IMS Buffer Pool Analyzer, refer to the product manual IBM
IMS Buffer Pool Analyzer for z/OS User’s Guide, SC18-7068.

Chapter 3. Monitoring tools 43

44 IMS Performance and Tuning Guide

Chapter 4. IMS and Workload Manager

This chapter provides a detailed discussion about setting up, identifying, and resolving
performance problems related to Workload Manager. It follows from the discussion in
Chapter 1, “Defining the performance problem in an IMS environment” on page 1 and
discusses z/OS considerations for IMS.

This chapter describes external components outside IMS that can impact the performance of
IMS. Variables and events internal to the IMS database manager (DM) are covered in
Figure 5 on page 53 and those internal to the IMS transaction manager (TM) are covered in
Chapter 6, “Transaction manager performance” on page 125. Application performance
considerations are covered in Chapter 9, “Application considerations” on page 169.

This chapter discusses the following topics:

� Workload manager (WLM) from an IMS perspective
� CPU management
� Memory-related issues
� I/O subsystem issues

4

© Copyright IBM Corp. 2006. All rights reserved. 45

4.1 Workload manager in an IMS world

With the introduction of the zSeries and the z/OS operating system, dynamic workload
management was introduced. This is implemented by a component known as Workload
Manager (WLM). WLM is responsible for ensuring that the multi-workload architecture evident
in a z/OS system uses resources based on goals and the importance of each workload. Each
workload is also given a service class to distinguish it from other workloads.

WLM is a total replacement of the old IPS and ICS settings and, therefore, cannot coexist.
What is required is a business view of all your workloads in order to define the importance of
the workload. Let us define some of the rules that are required in order to ensure optimum
usage and functionality of WLM:

� In order to define the correct business policy for WLM, we need to implement a concept of
a service level agreement (SLA). The SLA is essentially a contract between the business
and the Information Technology (IT) departments to provide a service based on
end-to-end response times, availability, and throughput.

� The workloads need to be defined and grouped into service classes.

� Each service class or collection of service classes needs to be defined with the SLA
agreed to importance and performance goals.

� The importance of the workload varies from importance 1 through to 5, with 5 the least
important.

� The performance goal is either based on response time, velocity, or discretionary:

– Response time requires that you specify either your average host response times or
percentage of work that needs to complete in a certain response time.

– Velocity is the measurement of how fast you want work to run when it is ready.

– A discretionary goal is only executed when system resources are available for this type
of workload.

4.1.1 Defining IMS workloads to WLM

The recommended approach is to define all IMS workloads to WLM using response time
percentile goals. This is to ensure that WLM does not keep adjusting workloads in order to
meet response time measurements, which could cause other workloads to suffer. Workloads
defined with predefined goals are called Goal Mode, and this is the only supported way to
specify z/OS performance objectives.

In order to define your workloads, you need to profile all IMS workloads at peak times in order
to define the following:

� Separate long running bad transactions from transactions that run quickly.

� Separate transactions that run quickly into high, medium, and low volume transactions.

� Define service classes for all region types based on transaction class rather than
transaction codes. Too many service classes can produce unpredictable results, so your
workload needs to be analyzed to determine optimum settings.

� Obtain average host response times for all workloads.

� Define what percentage of workloads will meet the average response times. This is
normally obtained from your SLA.

� Set up the workload using response time percentiles.

� Monitor and change if necessary.

46 IMS Performance and Tuning Guide

For detailed information about WLM, refer to the IBM Redbook, System Programmers Guide
to: Workload Manager, SG24-6472.

4.1.2 Rules for ensuring the correct priorities are assigned

Depending on your installation, you might need to adapt the generalized rules that follow to
your specific requirements. Table 4-1 provides a list of sample transactions with response and
CPU time analyses of all workloads. What follows is the analysis of workload that can be
adopted in any organization.

Profile your workload
The workload identified shows a total of 14 transactions with a profile of each transaction
during peak hours. This profile must be compared to a historical repository of your workload
to ensure response and CPU times are similar.

Table 4-1 Analysis of IMS workload during peak hours

Transaction
name and class

Transaction
volume

Average host
response time
in seconds

Average CPU
time in
milliseconds

Average DB
calls per
transaction

HG0TRN01
class 1

1 238 421 0.450 s 0.0315 ms 45

HG0TRN02
class 2

1 421 358 0.380 s 0.0311 ms 30

HG0TRN03
class 3

1 212 854 0.410 s 0.0320 ms 34

HG0TRN04
class 4

1 892 251 0.480 s 0.0330 ms 40

HG0IFP01
no class as IFP

12 238 722 0.220 s 0.0225 ms 25

HG0IFP02
no class as IFP

34 228 212 0.240 s 0.0235 ms 28

HG0WFI01
class 7

18 228 354 0.180 s 0.0204 ms 18

HG0WFI02
class 9

22 851 004 0.205 s 0.0215 ms 22

HG0WFI03
class 11

19 251 644 0.150 s 0.0195 ms 18

HG0PFI01
class 15

4 327 890 0.320 s 0.0290 ms 32

HG0PFI02
class 15

5 327 085 0.310 s 0.0280 ms 36

HG0LNG01
class 21

854 356 2 s 9.5800 ms 856

HG0LNG02
class 25

768 252 3 s 9.2588 ms 945

HG0LNG03
class 27

824 931 2 s 9.9824 ms 825

Chapter 4. IMS and Workload Manager 47

Group your workload into service classes
Group workloads from your transaction profiles and determine workloads that can be set up
using the same service class. Table 4-2 describes the type of information that is required to
set up the service class definitions in WLM:

� Transactions HG0TRN01, HG0TRN02, HG0TRN03, and HG0TRN04 can be combined to
run in a single class with multiple copies of the dependent region and specifying the
MAXRGN parameter to ensure no domination by any specific transaction.

� HG0IFP01 and HG0IFP02 have separate service classes, because they are high volume
transactions. The transaction name needs to be specified, because they are Fast Path
transactions.

� HG0WFI01, HG0WFI02, and HG0WFI03 have individual service classes.

� HG0PFI01 and HG0PFI02 have a single service class.

� HG0LNG01, HG0LNG02, and HG0LNG03 have a single service class, because their CPU
usage profiles are similar.

� The percentile provides WLM with a percentage of work in a period that should complete
within the response time provided.

Table 4-2 Defining elements of your policy

When you are confident that your workload is specified correctly, you can proceed to define
the WLM policy. Speak to your WLM performance specialist to set up the service class
definitions.

Setting up workload in the correct priority
Once the workloads are defined, we need to set up all the IMS address spaces and their
relevant importance. With WLM, there are only five importance levels, with 1 the most
important and 5 the least important. Table 4-3 on page 49 describes the various IMS address
spaces, their importance, and velocity. The WLM specialist in your organization must be
provided with information in order to be able to define the WLM policy correctly. He requires
input from all areas to ensure business rules are applied throughout the WLM policy, because
your system might have a combination of IMS, CICS, and DB2 workloads. You might also
decide to introduce a policy for online workloads favoring online transactions and another
policy for batch workload at night favoring batch workload. Decisions such as these have to
be made in conjunction with your WLM specialist.

Service class
definition in WLM

IMS transaction
class definition in
IMS

Response time goal
to be achieved

Percentile to achieve
goal

IMSTRN01 Class 1 0.430 s 85%

IMSIFP01 Specify transaction 0.220 s 95%

IMSIFP02 Specify transaction 0.240 s 95%

IMSWFI01 Class 7 0.180 s 95%

IMSWFI02 Class 9 0.205 s 95%

IMSWFI03 Class 11 0.150 s 95%

IMSPFI01 Class 15 0.315 s 90%

IMSLNG01 Class 21 2.5 s 80%

48 IMS Performance and Tuning Guide

Some IMS workloads are put into special WLM service classes called SYSSTC to guarantee
service. All other workloads are given importance and execution velocity. The control regions
(IMSCTL) and DLISAS (IMSDLI) could be put in SYSSTC if the need arises. Monitoring the
workload reveals the need to change the importance of address spaces and workloads. A
special hot batch workload is defined to run special batch workload during your critical online
periods. It must be clearly understood that this service class is only meant for workloads that
have prior approval before running.

Table 4-3 Recommended settings for IMS address spaces

When you have defined your address spaces, dependent regions, and BMP workload with the
correct importance and velocity, the policy can be implemented by your WLM specialist.

If you are using XRF, RSR, or FDBR, the partners of active IMS systems (FDBR, RSR, or
XRF), they need to be set at the same WLM priority as the active systems they are shadowing
to ensure that they do not fall behind and thereby lose their purpose of enhancing data and
service availability.

Monitoring your workloads
The implementation of the policy requires monitoring all aspects of your system to ensure
response times are not degraded. You will probably end up changing the policy many times,
before it becomes an ideal fit for your organization. Table 4-3 assumes that IMS online
workload is extremely important to your organization and has been structured as such.

WLM by itself has no way of knowing IMS response times. When the control region starts up,
it registers itself to WLM and informs WLM of the identity of all other address spaces, such as
DLISAS, DBRC, and IRLM. During dependent region startup, a special control block called
the performance block (PB) is built. The PB is used to report the status of the work executing
in the dependent region, allowing WLM to meet its goals. One of the components of the PB is
the response time measurement updated by IMS and used by WLM to manage its goals.

Monitoring must include the following:

� Reviewing transaction profiles to ensure response times are not compromised and CPU
usage is comparable to what you have historically.

Address space name Importance Velocity

GRS, WLM, and MASTER SYSTEM

DBRC, IRLM, CQS, VTAM,
TCP/IP, RMF™, and IMS
CONNECT

SYSSTC

IMSCTL and MONITORS 1 95

IMSDLI 1 75

Message regions high 1 50

Message regions medium 2 85

Message region low 2 40

BMP batch hot 1 20

BMP batch high 2 80

BMP batch medium 2 40

BMP batch low 2 20

Chapter 4. IMS and Workload Manager 49

� Reviewing the WLM reports available through the Resource Management Facility (RMF)
to ensure your performance index is close to 1 for all address spaces and response time
goal measurements on transactions. Change the importance or the percentiles for
response time goals or shuffle address spaces if required:

– A performance index below 1 means that your goals are being exceeded and your
workload could possibly be a CPU donor if WLM requires CPU.

– A performance index of 1 means your goals are being met.

– A performance index above 1 means your goals are not being met.

� Review the usage of memory by various tasks to ensure no paging.

� Review the I/O subsystem to ensure no I/O delays evident.

4.2 CPU management

CPU usage is controlled through dispatching priorities. The dispatcher has a queue of ready
work, sorted in priority order. When running WLM in goal mode, dispatching priorities are
provided by WLM.

A dispatching priority is a number from 0 to 255 associated with a dispatchable piece of work
in the form of a task control block (TCB) or service request block (SRB). Table 4-4 provides
dispatching priorities as related to managing workloads.

Table 4-4 Dispatching priorities as related to CPU management

The IMS address spaces, IMS regions, and BMP batch workload are dispatched according to
the importance and velocity. The dispatching priority of the address spaces also changes
depending on whether the goals are being achieved.

The obvious issue is that we cannot define all workloads as high priority. Constant monitoring
is required to ensure goals are being met. In a busy system, WLM finds a donor from which to
steal CPU. We need to make sure the donor is not a critical workload. Review you
performance indexes regularly to ensure they are as close to 1 as possible.

4.3 Memory management

With z/Architecture™ and z/OS V1R6, expanded storage no longer exists. All page frames
are managed in central storage. Paging still exists between central and auxilliary storage.
With the 64-bit z/OS architecture, memory management has been improved significantly. IMS

Dispatching priority Usage

255 Reserved for SYSTEM tasks only

254 Reserved for SYSSTC tasks only

253 Reserved for SYSSTC tasks only

208 to 252 Importance 1 through to 5

202 to 207 Not used

192 to 201 DISCRETIONARY or SYSOTHER

191 Quiesce work, only use CPU if available

50 IMS Performance and Tuning Guide

provides various ways to load most of its structures into memory. Chapter 6, “Transaction
manager performance” on page 125 provides more details about IMS structures that can be
loaded into memory.

Memory is a relatively cheap resource and you should consider upgrading memory on your
processors on any paging-related problems.

4.3.1 Identifying memory-related problems

With WLM, memory usage is determined by the importance of workload and the achievement
of goals. Paging and page stealing would only be noticed with small amounts of memory
defined to the z/OS operating system. If your architecture has memory constraints, then it
would be feasible to ensure that you do not page fix any large IMS control blocks.

The best performance for an IMS system is achieved when all IMS structures exist as pages
in central storage. In a busy IMS system, this is almost always the case.

The only recommendation we have about memory is that you must ensure zero or as close to
zero paging as possible. This can only be achieved if your workload is structured correctly in
WLM, and memory is not a constraint in your architecture.

4.4 I/O subsystem

The I/O response time is the most significant delay that an IMS transaction experiences in its
life cycle. As CPU speeds increase, the I/O response time becomes more important. The I/O
response time is essentially made up of four components:

� The IOSQ time is the time spent in the z/OS operating system waiting for the device.

� The PEND time is the time spent from the start of the SSCH to when dialog begins
between the channel and the controller. With the introduction of FICON®, this time has
almost disappeared and should not appear as a problem. Most of this time has moved into
disconnect time.

� Disconnect time is the time that the channel and controller are not in dialog. With modern
controllers, this time is mostly related to synchronous remote copy (PPRC). Other causes
could include high sequential writes, control units busy, or the block is not in the cache
resulting in a cache miss.

� Connect time is the time spent doing the actual I/O. This is the transfer of data to and from
the controller cache.

4.4.1 Ideas to minimize I/O contention

IMS provides many ways in which to improve I/O response time or eliminate I/O totally.
Databases in IMS can either use the virtual storage access method (VSAM) or the overflow
sequential access method (OSAM):

� All heavily used databases together with their index and data components can be loaded
in either VSAM or OSAM buffer pools. You need to analyze of all your database profiles in
order to decide whether to dedicate buffer pools to databases.

� Enabling sequential buffering for OSAM performs read ahead processing, reducing
application run times significantly.

More information about rules for allocating buffer pools appears in Figure 5 on page 53.

Chapter 4. IMS and Workload Manager 51

WLM also provides ways to assist you with I/O contention and priority:

� If I/O priority management is activated, then WLM calculates the I/O priority based on
demand and goal achievement for each service class. In this case, the I/O priority is
independent from the CPU dispatching priority.

� If I/O priority is not used, WLM uses the CPU dispatching priority to perform the I/O.

� Enabling parallel access volumes (PAV) allows z/OS to perform multiple I/O operations
against the same physical volume.

52 IMS Performance and Tuning Guide

Chapter 5. Database performance

The primary goal of improving how a database performs is to reduce the number of I/Os that
an application program must make. Reduce the number of I/Os a program makes, the faster
the application runs. In this chapter, we discuss the following topics:

� Selecting an access method
� HISAM as opposed to HD access methods
� (P)HDAM as opposed to (P)HIDAM
� HALDB
� OSAM as opposed to VSAM
� HALDB partition selection
� Block sizes, CI sizes, and record sizes
� Free space
� Randomization parameters
� Fixed length as opposed to variable length segments
� Pointer options
� SCAN= parameter on the DATASET statement
� Multiple data set groups
� Compression
� Encryption
� Secondary indexes
� Fast Path performance considerations
� Non-recoverable databases
� Overflow sequential access method (OSAM)
� Virtual storage access method (VSAM)
� Improve GSAM performance
� When to reorganize

In this chapter, we do not provide advice about the logical structure of a database, such as
the hierarchical structure, the placement of fields within segments, or the keys that you should
use. These items are determined by the application data and the requirements of the
application design. Logical databases and logical relationships are not covered in this
chapter. Hierarchical sequential access method (HSAM) and simple hierarchical sequential
access method (SHSAM) are not covered. These are special purpose databases, which you
cannot update. They can only be loaded and read.

5

© Copyright IBM Corp. 2006. All rights reserved. 53

5.1 Access methods

IMS has several access methods for storing data. Each has its own attributes and uses.
Some methods perform better if the application is sequentially reading the data; others
perform better if the application randomly accesses the data. Choosing the right access
method is important to the overall performance of the database.

When creating the IMS database descriptor (DBD), you have a few options to choose from to
select your database access method. The database access method defines to IMS how the
program processes the segments. In general, you base the access method chosen on the
application requirements. Below are the types of IMS databases.

Hierarchical sequential access method
Hierarchical sequential access method (HSAM), which can use either BSAM or QSAM, has
the following attributes:

� Like a flat or sequential file
� Must process in sequential, top to bottom, left to right, and front to back sequence
� No direct access to root segments
� Can have many levels of segments
� Can perform GU, GN, and GNP calls
� ISRT call allowed only when database is loaded
� Database update done by merging databases and writing new database
� Not used in IMS online environment

Simple hierarchical sequential access method
Simple hierarchical sequential access method (SHSAM), which can use either BSAM or
QSAM, has the following attributes:

� This database structure must be a root only database.
� Same as HSAM.
� Not used in IMS online environment.

Hierarchical indexed sequential access method
Hierarchical indexed sequential access method (HISAM), which uses VSAM, has the
following attributes:

� Direct access to root segments but access to dependent segments is sequential through
displacements.

� Simple database structures: a root and under six children.

� Used when deletion of segments is minimal.

� Used when there are lots of roots and very few children.

� Good access method for tables when data remains the same, or when very few updates
are done.

� Used when inserts are few.

� Used when database records, (a root and all its children), are the same length.

� All DL/I calls allowed.

� Can be used in IMS online environment.

� There are two bytes of segment prefixes: the segment code and the delete byte.

� The DBD is not used to define the CI size or free space; the VSAM delete define
statements take care of that function.

54 IMS Performance and Tuning Guide

� VSAM size limit = 4 294 967 296 bytes (4 gigabyte limit).

Simple hierarchical indexed sequential access method
Simple hierarchical indexed sequential access method (SHISAM), which uses VSAM, has the
following attributes:

� This database structure must be a root only database.
� No segment prefix.
� Same as HISAM.
� VSAM size limit = 4 294 967 296 bytes (4 gigabyte).

Generalized sequential access method
Generalized sequential access method (GSAM), which can use QSAM/BSAM or VSAM, has
the following attributes:

� Like a flat or sequential file
� Has no hierarchy, database records, segments, or keys
� Used only for batch or BMP checkpoint/restart processing
� Not used in IMS online environment
� Can reposition to a specific block/record through restart
� Can perform GU, GN, and ISRT calls

Hierarchical direct access method
Hierarchical direct access method (HDAM), which can use OSAM or VSAM, has the following
attributes:

� Direct access to root segments but access to dependent segments can also be direct
through the use of pointers.

� Root segments are not physically stored in root ascending key sequence but are stored in
a random order, that is, if you perform an unqualified GN on the root segment of the HDAM
database, the sequence of the roots is 123, 001, 077, 078, 415, 002, and so on.

� Can be used in IMS online environment.

� Usually, it requires one I/O to get to the root segment.

� Complex database structures.

� Segment prefix: segment code, delete byte, and pointers.

� Default pointers are physical twin forward (PTF) and physical child first (PCF).

� CI size is determined in the define cluster, not in the DBD if VSAM.

� FREESPACE is determined in the primary DBD, not the define cluster.

� FREESPACE is determined in the define cluster, not in the DBD for secondary indexes
along with CI size.

� OSAM size limit = 85 899 345 920 bytes (80 gigabytes [8 GB limit per data set, 10 data
sets max]).

� VSAM size limit = 42 949 672 960 bytes (40 gigabytes [4 GB limit per data set, 10 data
sets max]).

Partitioned hierarchical direct access method
Partitioned hierarchical direct access method (PHDAM), which can use OSAM or VSAM, has
the following attributes:

� Same as HDAM.

� Partition on a key (by high key or a substring of the root key).

Chapter 5. Database performance 55

� Partitions of a HALDB can be operated in parallel and independently of each other, so one
is offline and others can be online.

� Partitions have the ability to be reorganized online with complete availability with HALDB
integrated online reorganization (OLR) in IMS Version 9.

� HALDBs do not require utilities to correct pointers in logical relationships. The pointers are
automatically corrected as needed using the indirect list data set (ILDS).

� Must be registered with DBRC.

� Size limit = 43 980 465 111 040 bytes (40 terabytes [1 001 partitions, 10 data sets per
partition maximum, 4 gigabyte limit per data set]).

Hierarchical indexed direct access method
Hierarchical indexed direct access method (HIDAM), which can use OSAM or VSAM, has the
following attributes:

� Direct access to root segments but access to dependent segments can also be direct
through use of pointers.

� Root segments are physically stored in root ascending key sequence, that is, if you
perform an unqualified “GN” on the root segment of the HIDAM database, the sequence of
the roots is 001, 002, 077, 078, 123, 415 and so on.

� Can be used in IMS online environment.

� In general, it requires three I/Os to get to the root segment, two to read the index and one
more to read the data.

� Complex database structures.

� OSAM size limit = 85 899 345 920 bytes (80 gigabytes).

� VSAM size limit = 42 949 672 960 bytes (40 gigabytes).

Partitioned hierarchical indexed direct access method
Partitioned hierarchical indexed direct access method (PHIDAM), which can use OSAM or
VSAM, has the following attributes:

� Same as HIDAM.

� Partition on a key (by high key or a substring of the root key).

� Partitions of a HALDB can be operated in parallel and independently of each other, so one
is offline and others can be online.

� Partitions have the ability to be reorganized online with complete availability with HALDB
integrated online reorganization (OLR) in IMS Version 9.

� HALDBs do not require utilities to correct pointers in logical relationships. The pointers are
automatically corrected as needed using the indirect list data set (ILDS).

� Must be registered with DBRC.

� Size limit = 43 980 465 111 040 bytes (40 terabytes)

Data Entry Database
Data Entry Database (DEDB), which uses Media Manager, has the following attributes:

� Virtual storage
� VSAM Entry-sequenced data set (ESDS)

– Requires Media Manager, ICF, and DFSMS
– 127 segment types, including SDEP

� The field (FLD) call

56 IMS Performance and Tuning Guide

� Full DBRC support
� HSSP support
� DEDB utilities
� A full hierarchical model, including support of insert and delete calls
� Partitioned into areas (from 1 to 2 048)
� Allows for up to seven multiple area data sets (MADS)
� VSO DEDB

Load structures in data space to prevent I/O
� VSAM size limit = 8 796 093 022 208 bytes (8 terabytes [4 GB limit per area (data set),

[2 048 areas maximum])
� For DBCTL, only available to BMPs

Main Storage Database
Main Storage Database (MSDB), which uses memory, and has the following attributes:

� Virtual storage
� The field (FLD) call
� Fixed length segments
� Not offered in DBCTL
� MSDB not recommended any more, use VSO DEDB instead
� Not shareable in a data sharing environment

INDEX
This method has the following attributes:

� Primary index to occurrences of the root segment type in a HIDAM database, or a
secondary index to a segment type in a HISAM, HDAM, or HIDAM database.

� For the primary or secondary index to a HIDAM database, VSAM must be specified as the
operating system access method.

� There is no separate index database defined for the primary index of a PHIDAM database.

PSINDEX
This method has the following attributes:

� Partitioned secondary index to a segment type in PHDAM and PHIDAM databases.
� VSAM must be specified as the operating system access method.

5.1.1 Selecting an access method

The overriding choice for new databases is HALDB, PHDAM, or PHIDAM, because that is
where new development will occur. Otherwise, the first question you need to ask yourself is
what type of processing will be done against my database? Will it be direct or sequential? If
the processing will be direct, then HISAM, SHISAM, (P)HIDAM, or (P)HDAM are good
choices. If the access is going to be sequential, then HISAM, SHISAM, or (P)HIDAM are
appropriate. If the applications that run against this database are doing both sequential and
direct processing, then (P)HIDAM will perform well.

If there are a large number of updates performed; or the database records vary in length; or
you need to take advantage of logical relationships; or there is a good chance that a
secondary index is necessary; then we recommend using (P)HIDAM or (P)HDAM. For
existing HIDAM and HDAM databases, our recommendation is to convert to PHIDAM or
PHDAM, especially when you require greater capacity.

Chapter 5. Database performance 57

5.2 HISAM as opposed to HD access methods

IMS full function databases can use either the hierarchical indexed sequential access method
(HISAM) or one of the hierarchical direct (HD) access methods.

The HISAM database types are:

� Hierarchical indexed sequential access method (HISAM)
� Simple hierarchical indexed sequential access method (SHISAM)

The HD access method database types are:

� Partitioned hierarchical direct access method (PHDAM)
� Partitioned hierarchical indexed direct access method (PHIDAM)
� Hierarchical direct access method (HDAM)
� Hierarchical indexed direct access method (HIDAM)

HISAM and the HD access methods differ primarily in the way that they store segments and
use space in their data sets.

5.2.1 HISAM

HISAM stores segments in two data sets. These are the primary data set and the overflow
data set. The primary data set is a key-sequenced data set (KSDS). The overflow is an
ESDS. For each database record, HISAM places the root and some dependents in a logical
record in the primary data set. The number of dependents that HISAM stores in the primary
data set depends on the size of the logical record that you define. HISAM places dependent
segments, which do not fit in the index, in the overflow data set. The dependents might
require multiple logical records in overflow.

Your choices for the logical record sizes of the primary and overflow data sets can have a
significant effect on database performance. Ideally, you want IMS to store a database record
only in the primary data set. This eliminates I/Os to the overflow data set. If the database
records are uniform in size and not too large, your choice is simplified. You can make the
logical record size of the primary data set large enough to hold a database record without
wasting a lot of space. If database record sizes vary greatly, a primary record size large
enough to hold the larger database records would waste space for others.

Each logical record in the overflow data set contains segments from only one database
record. Any free space in the logical record can only be used for inserts into the same
database record. This can make sizing logical records difficult when database records vary in
size. Large logical record sizes tend to waste space. Small sizes tend to spread database
records over more logical records. This requires IMS to perform more I/Os to process the
database.

HISAM does not use pointers to navigate between segments in a database record. It always
stores segments in hierarchical sequence. IMS accesses a segment by reading all of the
segments from the root to the required segment. This can be disadvantageous with large
database records. Large records might require IMS to read multiple logical records in the
overflow data set. There are two bytes of segment prefixes: the segment code and the delete
byte. The DBD is not used to define the CI size or free space, the VSAM delete define
statements take care of that function.

HISAM does not reuse space that is occupied by deleted dependent segments. These
segments remain in the data sets when they are deleted. IMS sets a bit in their prefix to
indicate that they have been deleted. This has two effects. First, IMS might have to read
through these segments to reach other segments. Second, later inserts cannot use space

58 IMS Performance and Tuning Guide

created by these deletions. Instead, they have to expand the database. You must reorganize
the database to recover the space.

Inserts of roots into a HISAM database require a new logical record in the primary data set. If
a logical record is not available in the CI, a CI split is required.

Inserts of dependent segments might require updates to multiple CIs. Because the segments
are maintained in hierarchical sequence, the insert of a segment in the middle of a database
record requires the movement of the following segments. If there is not room at the end of the
last logical record used by the database record, new dependents require a new logical record.
This logical record is at the end of the overflow data set. If there are high volumes of inserts,
there tends to be a high volume of activity at the end of the data set. IMS must extend the
data set frequently.

Replacing variable length segments often requires the movement of other segments. If the
size of the variable length segment changes, the segments, which follow it in the database
record, must be moved. Similar considerations apply to fixed length segments when they are
compressed. Compressed fixed length segments are actually variable length when they are
stored. An explanation of compression appears in 5.12, “Compression” on page 84.

HISAM does not support multiple data set groups. You can define only two data sets, the
primary (KSDS) and the overflow (ESDS), for a HISAM database. See 5.11, “Multiple data set
groups” on page 82 for an explanation of multiple data set groups.

To insert dependent segments under the root, define the VSAM record size to be larger than
the average database record length at initial load time. This leaves unused space in the
VSAM record, which can then be used at update time to insert dependent segments for a
given root.

To insert new roots into the database, there needs to be free space in the KSDS after the
initial load. This is accomplished by coding the free space percentage parameter. This
percentage needs to be a multiple of the amount of space it takes to store one record using
the average database record length. For example, if it takes 3% of the CI to store one record,
then free space should always be expressed in 3% increments. Such as 3, 6, 9, 12, and so
on. If you code anything other than zero for the CA free space, VSAM leaves at least one CI
for each CA empty during a load. If inserts to the database are evenly distributed throughout,
then the CA free space should be the same as the percentage of new records. If you are
always inserting roots whose keys are higher than the highest key in the data set, do not
leave any free space in the CI or CA. For more detailed information about free space, see 5.6,
“Free space” on page 70.

Recommendations for using HISAM
HISAM is best suited for databases with the following characteristics:

� Database records are relatively small. They typically require only one logical record in the
primary data set (KSDS). Occasionally, they might require one logical record in the
overflow data set (ESDS).

� Database records are relatively uniform in size. There is not a large range in size for most
database records.

� The database is stable. There are not high volumes of deletes and inserts in the database.

� The database will not grow past the data set size limitation of 4 gigabytes per data set.

Chapter 5. Database performance 59

5.2.2 SHISAM

Simple HISAM (SHISAM) is a simplified version of HISAM. SHISAM databases have the
following restrictions:

� They have no dependent segments. Only root segments are allowed.
� They cannot have secondary indexes.
� They cannot have logical relationships.
� All segments are fixed length. Variable length segments are not supported.
� Compression or encryption is not allowed.

A SHISAM database is stored in a KSDS. The segments do not have an IMS prefix. Since
they do not have an IMS prefix, you can process a SHISAM database as a KSDS without
using DL/I calls. Conversely, you can process a KSDS with fixed length records as a SHISAM
database using DL/I calls.

Since SHISAM segments have no prefix and SHISAM requires only one data set, SHISAM
makes efficient use of space. It requires less space than a root-only HISAM, HIDAM, or
PHIDAM database.

Recommendations for using SHISAM
If you have a database that meets the SHISAM restrictions, you should consider using
SHISAM for it. Additionally, if you need to process a KSDS with fixed length records as an
IMS database, you can define it as SHISAM.

5.2.3 HD access methods

HD access methods store segments in one or more data sets. They can use either OSAM or
VSAM ESDS for these data sets. HIDAM and PHIDAM databases also include indexes. The
indexes point to the root segments, which are stored in the ESDS or OSAM data sets.

HD access methods and HISAM have different techniques for navigating between segments.
HD uses pointers, which are stored in the prefix of segments. A prefix can contain separate
pointers to different segment types. This allows IMS to more directly navigate to dependent
segments. Figure 5-1 illustrates this. Segment A has pointers to the first B segment, the first
C segment, and the first D segment. IMS does not have to access any of the B or C segments
to reach the D segments.

Figure 5-1 HD pointers

The use of direct pointers usually makes HD the preferable access method for databases with
large database records. It is easier for IMS to navigate to individual segments within the
database.

B DC

A

60 IMS Performance and Tuning Guide

HD is the preferable access method for highly volatile databases with many deletes and
inserts. HD reuses the space occupied by deleted segments. When you delete segments,
their space is freed. Inserts can place segments in this free space.

CI splits can occur when you insert roots into HISAM, HIDAM, and PHIDAM databases. But
there is a significant difference in the likelihood of splits with the different database types. The
logical records for HISAM KSDSs are much larger than those for HIDAM and PHIDAM. The
logical records for HISAM contain the root segment and, typically, several dependents.
HIDAM and PHIDAM indexes contain only the key, a delete byte, and a four-byte pointer to the
root segment. Because HISAM logical records are much larger, fewer will fit in a CI. This
affects the probability of CI splits. The following example illustrates this point. Consider a
HISAM database whose primary data set has 1K logical records and an 8K CI size.
Twenty-five percent free space would provide room for only two inserts before a split would be
required. Compare that with a HIDAM or PHIDAM database. If the key were 10 bytes, each
logical record would be only 15 bytes. Twenty-five percent free space in an 8K CI would
provide room for 136 inserts before a split would be required. HIDAM and PHIDAM are
typically better choices for databases with many inserts of root segments.

Replacing variable length segments does not require the movement of other segments in HD
databases. If the segment grows so that it does not fit in its previous location, IMS stores the
data portion of the segment elsewhere. The segment's prefix does not move. Pointers to this
segment from other segments are not changed. A pointer to the data portion is added to the
prefix. This technique minimizes the effect on the rest of the database for these types of
replacements.

HD supports multiple data set groups. They give you greater flexibility in handling varying
space requirements and access patterns for different segment types. See 5.11, “Multiple data
set groups” on page 82 for an explanation of multiple data set groups.

HD includes HALDB, PHDAM, and PHIDAM databases. These databases can contain up to
1 001 partitions and hold up to 40 terabytes of data. Additional HALDB specific information
and recommendations can be found in 5.4, “HALDB” on page 64.

Recommendations for using HD access methods
HD is well suited for databases with the following characteristics:

� Database records have great variations in their sizes.
� Database records are large and contain many types of segments.
� There are high volumes of deletes and inserts in the database.
� The database might have significant growth.

5.3 (P)HDAM as opposed to (P)HIDAM

PHDAM, HDAM, PHIDAM, and HIDAM databases share some of the same characteristics.
They use direct pointers to navigate between segments in a database record. When
segments are deleted, the space they occupied is available for the insertion of other
segments. The primary difference between the types is that PHIDAM and HIDAM have
indexes. This allows you to easily process the databases in root key sequence. PHDAM and
HDAM use hashing, or if you prefer, randomizing modules to determine where root segments
are stored. IMS does not store or retrieve PHDAM or HDAM roots in key sequence.

HDAM or PHDAM are good for key read access to the root and segments under that root. A
good general rule when choosing between (P)HIDAM and (P)HDAM is that if the application
(all of the programs that access this database) is doing about five to 10 times as many GUs
as GNs on the root segment, then it is a candidate for (P)HDAM.

Chapter 5. Database performance 61

5.3.1 Space use

There are some important distinctions in how space is used by PHDAM and HDAM as
opposed to PHIDAM and HIDAM. PHIDAM and HIDAM tend to use less space. When they
are reorganized, the database records are written in sequence leaving only the specified free
space. When PHDAM and HDAM are reorganized, the database records are chained from
their root anchor points (RAPs). These are spread across the root addressable area (RAA®).
If the database records vary in size, it might be difficult to create free space that is evenly
spread across the RAA. More information and advice about free space appears in 5.6.1,
“Specifying free space” on page 70. Because PHIDAM and HIDAM tend to use less space,
batch jobs, which process the entire database, typically perform better with these database
types.

5.3.2 Sequential processing

PHIDAM and HIDAM databases allow you to access database records in key sequence. If
you require key-sequential access for a PHDAM or HDAM database, you can use a
secondary index where the secondary index key is the root key. Applications, which require
sequential processing, can use the secondary index when accessing the database. This
allows IMS to use space according to the rules of PHDAM and HDAM databases while
allowing applications to access the databases in key sequence. It is also possible to create a
sequential randomizer, which places roots in the PHDAM or HDAM database in root key
sequence. You can use the IBM product, IMS Sequential Randomizer Generator, to create
sequential randomizers.

5.3.3 I/Os

PHIDAM and HIDAM databases have indexes. When you request a root segment by its key,
IMS reads the index to find the location of the key. This processing is not required with
PHDAM and HDAM databases. For them, IMS invokes the randomizer to find the root anchor
point (RAP) from which the root is chained. Typically, IMS does more processing to retrieve or
insert PHIDAM and HIDAM roots. This tends to give PHDAM and HDAM a performance
advantage. Of course, this assumes that the PHDAM partition or HDAM database is
reasonably well organized.

5.3.4 Reorganizations

Most databases have to be reorganized occasionally. The time between reorganizations
usually depends on the type of insert and delete activities, the distribution of free space, and
the database type. PHIDAM and HIDAM databases differ from PHDAM and HDAM databases
in their reorganization characteristics. If a PHIDAM or HIDAM database has large amounts of
inserts in a range of root keys without deletes in the same range, it is likely to need
reorganization. This is not necessarily true with PHDAM and HDAM. Because randomizers
spread the roots across the partitions or databases, activity for a range of keys tends to be
spread across the entire PHDAM partition or HDAM database. PHDAM and HDAM tend to be
better choices for these types of databases.

5.3.5 Creeping keys

The root keys in some applications increase in value over time. An example is a key based on
the time of the insertion of the root. Such keys are called creeping keys.

62 IMS Performance and Tuning Guide

For HDAM databases, this does not have special significance. HDAM spreads the roots
randomly across the root addressable area. Deleted segments typically make room for new
segments. Space use tends to be randomly distributed across the root addressable area.

For PHDAM databases using key range partitioning, space use tends to be randomly
distributed across the root addressable areas of the partitions. New roots with creeping keys
are placed in the last partition. You might have to create new partitions for new time periods.

You might want to avoid the requirement to add new partitions with PHDAM. If the total
amount of data in the database does not increase, but the key values increase, you might
want to use a partition selection exit routine instead of using key range partitioning. The exit
routine can assign keys to partitions by using only a low order subset of the key. For example,
if the key were eight numeric digits long and you wanted 10 partitions, you could use the low
order digit to assign the key to a partition. Key zzzzzzz1 could be assigned to the first
partition; key zzzzzzz2 could be assigned to the second partition; and so on with key
zzzzzzz0 assigned to partition 10. Assuming that the values of the low order digit were evenly
distributed from 0 to 9, the keys would be evenly distributed across the partitions. Since the
database is PHDAM, deletes would create usable space for future inserts.

For HIDAM databases, IMS places new roots with creeping keys near the last ones inserted.
This is at the end of the used space in the data set. When you delete the oldest database
records, you make space near the beginning of the data set. IMS typically cannot use this
space for new insertions. In this sense, the space used in the data set tends to creep from the
front to the end of the data set. The database likely requires reorganizations. HIDAM with
creeping keys has a second disadvantage. The inserts of new keys are into the last CI in the
primary index. This causes CI/CA splits and disorganization of the index. This is a second
reason why these databases likely require frequent reorganizations.

PHIDAM is similar to HIDAM. With key range partitioning, all inserts for creeping keys are
made into the last partition. Space used in the partition data set tends to creep from the front
to the end. You might need to add new partitions occasionally. This starts the process again
for the new partition. With a partition selection exit routine, new roots might be placed in any
of the partitions. This does not eliminate the problem of the creeping use of the data sets.
New roots in a partition always go into the end of the partition. The creeping occurs in parallel
across all the partitions.

PHDAM or HDAM is often a better choice than PHIDAM or HIDAM for databases whose root
key values increase over time. They eliminate the problem of creeping space use. They can
substantially reduce the frequency with which you must reorganize. Of course, PHDAM or
HDAM do not maintain roots in key sequence. If you must process a database in key
sequence, you might be able to use PHDAM or HDAM with a secondary index. The
secondary index can provide the sequencing you need. The secondary index might suffer the
effects of creeping keys, but the space use in the database would not creep.

5.3.6 Recommendation summary for (P)HDAM as opposed to (P)HIDAM

PHIDAM and HIDAM have the following advantages over PHDAM and HDAM:

� They tend to use less space. This provides a performance advantage for batch jobs, which
sequentially process the entire database, especially if you enable OSAM sequential
buffering.

� They allow you easily to process a database in root key sequence.

� To a certain extent, creeping keys can be resolved by using a Partition Selection Exit and
using specific bytes of the key to allow for equal distribution across all partitions.

PHDAM and HDAM have the following advantages over PHIDAM and HIDAM:

Chapter 5. Database performance 63

� They tend to require fewer I/Os to retrieve and insert root segments.

� They tend to require fewer reorganizations when update activity is concentrated in a range
of keys.

� They tend to handle space management with creeping root keys better.

5.4 HALDB

High Availability Large Database (HALDB) has three additional types of full function
databases: PHDAM, PHIDAM, and PSINDEX. Application programs that use non-HALDB
databases work without change when the databases are migrated to HALDB. HALDB
provides these major advantages over non-HALDB full function databases:

� Larger database capacity
HALDB databases can be spread across 1 to 1 001 partitions. Each partition can have
one to 10 data sets. Each data set can be up to 4 gigabytes. This means that HALDB
databases have a maximum capacity of 40 terabytes.

� Shorter offline reorganization times
HALDB partitions can be reorganized independently and in parallel. When you reorganize
a partition or database, you do not have to rebuild or update the secondary indexes that
point to it. Similarly, you do not have to update any logically related databases. IMS
automatically updates the secondary index pointers and logical relationship pointers when
they are first used following the reorganization. These updates use the HALDB
“self-healing pointer” process. The combination of reorganizing partitions in parallel and
the self-healing pointer process can greatly reduce the elapsed time required for
reorganizing HALDB databases with offline processes.

� Online reorganization
HALDB online reorganization allows an IMS online system to reorganize HALDB partitions
while applications read and update the partitions. The applications can run in the same
IMS online system or in data sharing subsystems.

The redbook, The Complete IMS HALDB Guide, All You Need to Know to Manage HALDBs,
SG24-6945, provides information about migrating databases to HALDB, defining their
partitions, and maintaining them.

5.4.1 HALDB partition selection

HALDB databases have one to 1 001 partitions. IMS assigns database records to partitions
based on the key of the root segment. This assignment is done as part of partition selection.
You specify how partition selection is done. You tell IMS to use either key ranges or a partition
selection exit routine. Partition selection also determines the order in which partitions are
processed by sequential processing.

Recommendation: Installations, which have database requirements answered by HALDB,
should convert those databases to HALDB. You do not need to convert existing databases,
which do not require greater capacities and do not need shorter reorganization outages.
IMS intends to support non-HALDB full function database types for the foreseeable future.
On the other hand, enhancements for full function databases will be concentrated in
HALDB. For this reason, you should create new IMS full function databases as HALDB
types.

64 IMS Performance and Tuning Guide

5.4.2 Key range partition selection

Most HALDB databases use key range partition selection. In this method, you assign a high
key to each partition. IMS assigns roots within a key range to each partition. The partitions
are ordered in the order of the high keys. With PSINDEX and PHIDAM databases, sequential
processing retrieves all the roots in key sequence. With PHDAM, you assign a range of keys
to a partition, but the randomizer determines the order of the roots within a partition.

5.4.3 Partition selection exit routine

You can write a partition selection exit routine for any type of HALDB database. Your exit
routine assigns root keys to partitions. It also determines the order of the partitions. IMS
passes the key of the root segment and information about all of the partitions to the exit
routine. The routine uses the key to assign the root to a partition.

These exit routines are typically used to assign database records to partitions based on a
subset of the key. For example, part of the key might be a country code, department code, or
similar bit of information. You could use this to group data from each country or department
into its own partition. Application processing requirements usually determine if you should
use this type of partitioning. For example, you might want to process only the data for a
particular country or department with certain jobs. It would be more efficient if only the
database records for that country or department resided in a partition. Then, your job would
need to process only one of the partitions in the database.

Another use of these exit routines is to spread activity across multiple partitions. A typical
example is a database where each new root has a higher key than the existing roots in the
database. Key range partitioning would place these new roots in the last partition. You could
use a partition selection exit routine to spread the insert activity across all of the partitions.
This is further explained under 5.3.5, “Creeping keys” on page 62.

You should be careful about choosing a partition selection exit routine for PSINDEX and
PHIDAM databases. The exit routine typically does not assign roots to partitions in key order.
If you have chosen PHIDAM so that you can process the database in key sequence order,
you cannot use an exit routine that assigns keys by other than key range. Similarly, if you have
created the secondary index for secondary index key sequence processing, you cannot use
an exit routine that assigns secondary index keys by other than key range.

5.4.4 Defining partition selection

A partition selection exit routine is defined with the PSNAME parameter on the DBD statement.
The parameter specifies the name of the exit routine. If the PSNAME parameter is not included,
key range partitioning is implied. The specification on the DBD can be changed during
partition definition or with a DBRC command. The HALDB Partition Definition utility includes a
“Part Selection Routine” field in the “Master Database values” section. If you specify a name,
it is used as the partition selection exit routine name. If you make the field blanks or nulls, key
range partitioning is used. The INIT.DB and CHANGE.DB DBRC commands include
PARTSEL and HIKEY parameters. PARTSEL specifies the name of a partition selection exit
routine. HIKEY specifies that key range partitioning is to be used. These parameters override
the specification on the DBD.

5.4.5 Recommendation summary for HALDB partition selection

The recommendations for partition selection are:

� Key range partitioning is appropriate for most databases.

Chapter 5. Database performance 65

� You can use a partition selection exit routine to group data into partitions by a subset of the
root key.

� You can use a partition selection exit routine to spread activity across all of the partitions in
the database.

� Do not use a partition selection exit routine for a PHIDAM database that you must process
in key sequence order.

� Do not use a partition selection exit routine for a secondary index that you will use for
processing a database in secondary key order.

5.4.6 HALDB indirect data set lists

HALDB uses indirect data set lists (ILDS) for the self-healing pointer process. This process
eliminates the need to rebuild secondary indexes or resolve logical relationships when
databases are reorganized. ILDS is a VSAM KSDS data set. If you reorganize a HALDB
frequently, over time, the ILDS can become poorly organized. The APAR PQ88848 in IMS
Version 9 adds support for HD reload for the ILE insert to handle this case. It would save the
ILE updates in a data space, then sort them, and insert them in order. This change allows
reload to honor the free space specified when the ILDS KSDS was defined and allows the
ILDS to have space for later updates. In IMS Version 10, there is an enhancement to
DFSPREC0 utility to make a similar change.

5.5 Block sizes, CI sizes, and record sizes

You specify the block sizes of OSAM data sets, CI sizes of VSAM data sets, and record sizes
of KSDSs when you create databases. This section explains the requirements and
recommendations for these sizes.

5.5.1 Index CI sizes and record sizes

PHIDAM primary indexes, HIDAM primary indexes, secondary indexes, and HISAM
databases use VSAM KSDSs. This section discusses record sizes and CI sizes for these
KSDSs.

You do not need to specify the RECORD parameter on the DATASET statement for HIDAM
primary indexes and secondary indexes. IMS automatically calculates the record sizes for
these data sets during DBDGEN. They are reported in the output listing of DBDGEN. You
should use these sizes for the RECORDSIZE parameter on the IDCAMS DEFINE statements
when you define the data sets. If you specify a DATASET macro RECORD parameter smaller
than the calculated size, it will not hold the index record and the index cannot be loaded. If
you specify a RECORD parameter larger than the required size, you waste space in the data
set.

The appropriate record sizes for PSINDEX data sets are reported in the DBDGEN output for
these secondary indexes. You should use these sizes for the RECORDSIZE parameter on
the IDCAMS DEFINE statements when you create these data sets.

You must specify the RECORD parameter on the DATASET statement for HISAM
databases. As mentioned under “Hierarchical indexed sequential access method” on
page 54, ideally a record in the primary data set should be large enough to contain an entire
database record. In some cases, this could waste a lot of space. This is true when database
records vary significantly in size. Small records will use only a small amount of the VSAM
record. In this case, the primary data set record size should be large enough to hold the

66 IMS Performance and Tuning Guide

majority of database records. The overflow data set record size should be large enough to
hold the remainder of most other database records. Record sizes are specified on the
RECORD parameter of the DATASET macro.

The CI size for the data component of index data sets (KSDSs) determines how many logical
records are stored in a CI. Large CI sizes tend to be good for sequential processing. Multiple
records are read or written with one I/O. Large CI sizes might not be a benefit for random
processing. Typically, random processing accesses only one record per CI. For HISAM
databases and indexes where sequential processing is most important, large CI sizes (16 K,
20 K, 24 K, or 28 K) should typically be used.

The size of the KSDS index component CI can be either explicitly specified in your IDCAMS
DEFINE statement or allowed to default. The default causes VSAM to calculate the index CI
size. If you use z/OS 1.3 or a later release, you should use the default calculation. It optimizes
the index component CI size.

5.5.2 OSAM block sizes and VSAM ESDS CI sizes

OSAM block sizes and VSAM ESDS CI sizes affect the number of I/Os required to process a
database and the sizes of buffers in IMS systems. Typically, block sizes and CI sizes should
be large enough to hold entire database records. When database record sizes are very large
or vary greatly, this might not be possible. Then, you should attempt to make the block or CI
size large enough to hold the frequently accessed segments in the database records.

For sequential processing, large sizes are typically good. They reduce the number of I/Os that
are required to process the database. Block or CI sizes of at least 16K should typically be
used for databases which will be used with sequential processing. For random processing,
large sizes are not as beneficial. They increase the overhead of I/O processing and the space
required for database buffers. If a complete database record is stored in a small block or CI,
there might be no benefit in using a larger size.

OSAM block size specifications
For PHDAM and PHIDAM databases, you specify OSAM block sizes during partition
definition. You do this either with the Block Size field in the HALDB Partition Definition utility or
with the BLOCKSZE parameter on the DBRC INIT.PART or CHANGE.PART command.

For HDAM and HIDAM databases, you specify block sizes with the SIZE parameter on the
DATASET statement of DBDGEN. Alternatively, DBDGEN calculates these block sizes from
the specification of the BLOCK parameter on the DATASET statement. The value specified on
the BLOCK parameter includes only space that is used for segments. DBDGEN adds space
for a FSEAP and HDAM RAPs to calculate the block size from the BLOCK specification. Most
users specify SIZE rather than BLOCK, because SIZE is the actual block size. Using even
block sizes allows the non-HALDB OSAM data set to be 8 GB maximum. If an odd block size
is used, then the data set is restricted to 4 GB maximum.

When picking a block size, make sure that it is a valid OSAM buffer size, see table Table 5-1
for a list of valid sizes and DASD utilization.

Table 5-1 Number of blocks per track on a IBM 3390 disk drive

Block size of: Number of
blocks per track

8 gigabyte limit % utilization

512 49 22 827 CYLs 44.3

1 024 33 16 947 CYLs 59.6

Chapter 5. Database performance 67

VSAM ESDS CI size specifications
For VSAM database data sets, IMS always uses the CI size specified in the RECORDSIZE
parameter of the IDCAMS DEFINE statement. It does not use the CI size specified by the
SIZE or BLOCK parameters on the DATASET statement of DBDGEN. For documentation
reasons, we recommend that you specify a SIZE parameter that matches the CI size that you
will use. This can eliminate confusion which might occur if the size in the DBDGEN differed
from that actually used. When picking a CI size, make sure that it is a valid IMS VSAM buffer
size. See Table 5-2 for a list of valid sizes and DASD utilization.

Table 5-2 Number of VSAM CONTROLINTERVALs per track on a IBM 3390 disk drive

2 048 21 13 316 CYLs 75.9

4 096 12 11 651 CYLs 86.7

6 144 8 11 651CYLs 86.7

8 192 6 11 651 CYLs 86.7

10 240 5 11 185 CYLs 90.4

12 288 4 11 651 CYLs 86.7

14 336 3 13 316 CYLs 76.1

16 384 3 11 651 CYLs 86.7

18 432 3 10 357 CYLs 97.6

20 480 2 13 981 CYLs 72.3

22 528 2 12 710 CYLs 79.5

24 576 2 11 651 CYLs 86.7

26 624 2 10 755 CYLs 94.0

28 672 1 19 973 CYLs 50.6

30 720 1 18 642 CYLs 54.2

CI size of: Number of control
intervals per track

4 gigabyte limit % utilization

515 49 11 414 CYLs 44.3

1 024 33 8 474 CYLs 59.6

2 048 21 6 658 CYLs 75.9

4 096 12 5 826 CYLs 86.7

8 192 6 5 826 CYLs 86.7

12 288 4 5 826 CYLs 86.7

16 384 3 5 826 CYLs 86.7

20 480 2 6 991 CYLs 72.3

24 576 2 5 826 CYLs 86.7

Block size of: Number of
blocks per track

8 gigabyte limit % utilization

68 IMS Performance and Tuning Guide

If you want to change the CI size for a VSAM data set, it is not necessary to do a DBDGEN.
You only have to change the CI size in the IDCAMS DEFINE before reloading the database.

HALDB partition definition does not include a capability to specify VSAM CI sizes. They are
specified only with IDCAMS DEFINE statements.

5.5.3 FREQ parameter on the SEGM statement

The SEGM statement for HISAM, SHISAM, INDEX, and PSINDEX databases includes the
FREQ parameter. This parameter is optional. You do not need to specify it. It is ignored for
PSINDEX, INDEX, and SHISAM databases. The FREQ parameter specifies the frequency of
a segment in a HISAM database. This is the average number of these segments per its
parent. For root segments, the documentation states that FREQ is the number of roots in the
database; however, specifying FREQ for roots does not affect the output of DBDGEN.

For HISAM, DBDGEN uses the FREQ specifications on dependent segments to calculate
suggested logical record sizes and CI sizes. These are listed in the output of DBDGEN.
DBDGEN always produces the same suggestions for the prime and overflow data sets. If you
know the distribution of your database record sizes, you can choose logical record and CI
sizes which are better for your databases. If you do not know them, you are unlikely to know
the frequency of segment occurrences. For these reasons, you do not need to specify this
parameter.

You never need to specify the FREQ parameter. IMS ignores it for PSINDEX, INDEX, and
SHISAM databases. It is not valid for PHDAM, PHIDAM, HDAM, and HIDAM databases.

5.5.4 Recommendation summary for block sizes, CI sizes, and record sizes

The recommendations for block sizes, CI sizes, and record sizes are:

� Do not specify the RECORD parameter on the DATASET statement for INDEX databases
(secondary indexes and HIDAM primary indexes).

� Always use the output listing of DBDGEN to determine the RECORDSIZE parameters to
use for the IDCAMS DEFINE for KSDSs. These include data sets for PSINDEX, INDEX,
PHIDAM, HIDAM, and HISAM databases.

� If you use z/OS 1.3 or a later release, you should specify the data component CI size for
KSDSs. Do this with an IDCAMS DEFINE statement. Do not specify the index component
CI size. Let the system calculate it.

� The CI size for VSAM ESDS and KSDS data sets is not controlled by DBDGEN
parameters. It is determined by the RECORDSIZE parameter on the IDCAMS DEFINE
statement. To avoid confusion, specify the SIZE parameter on the DATASET statement
for VSAM data sets to match the CI size specified with IDCAMS.

� For HDAM and HIDAM OSAM data sets, specify the SIZE parameter on the DATASET
statement, not the BLOCK parameter.

� Do not specify the FREQ parameter on SEGM statements.

28 672 1 9 987 CYLs 50.6

CI size of: Number of control
intervals per track

4 gigabyte limit % utilization

Chapter 5. Database performance 69

5.6 Free space

Free space in a database affects the processing done by IMS to retrieve and insert segments.
Free space in a database increases the likelihood that an insert of a segment will go in the
same block as the segment from which it is chained. This tends to reduce the number of I/Os
required for inserting and retrieving segments. On the other hand, adding free space
increases the number of blocks that must be read for sequential processing, because it
spreads data across more blocks.

Free space is created when a database is initially loaded, when it is reorganized, and when
segments are deleted.

5.6.1 Specifying free space

Free space in HIDAM databases is specified with the FRSPC parameter on the DATASET
statement. The first subparameter specifies the free block frequency factor (FBFF). A value
of “x” specifies that every xth block in the data set is left as free space by a load or
reorganization. The second subparameter specifies the free space percentage factor (FSPF).
A value of “y” specifies that y percent of each block is left as free space by a load or
reorganization. Different data sets in the same database can have different free space
specifications.

Free space in PHIDAM databases is specified in the partition definitions. These parameters
are the free block frequency factor and the free space percentage factor that are described in
the previous paragraph. Each data set in a partition uses the same free space parameters.
The values are specified either in the HALDB Partition Definition utility or with the FBFF and
FSPF parameters of the DBRC INIT.PART and CHANGE.PART commands.

Free space in HDAM and PHDAM databases can be specified by using the same parameters
used with HIDAM and PHIDAM; however, you should not do this. Instead, you should use
other parameters to control how space is used in HDAM and PHDAM databases. If you
specify a free block frequency factor, a reorganization cannot place any database records in
the free blocks even though some records would be chained from the RAPs in these blocks. If
you specify a free space percentage factor, each block in the RAA would have space that
could not be used by a reorganization. Some root segments as well as their dependents
could be forced to the overflow area. A better way to specify the free space characteristics for
these databases is through the use of randomization parameters. Randomization parameters
are explained in 5.7, “Randomization parameters” on page 71.

Free space in PHIDAM primary indexes, HIDAM primary indexes, and secondary indexes is
specified with the FREESPACE parameter on the IDCAMS DEFINE statements. It is not
defined in DBDs or HALDB partition definitions. The FREESPACE parameter has two
subparameters. The first specifies the percentage of free space in each CI. The second
specifies the percentage of free space in each CA. You should specify free space when you
expect to insert new root segments in PHIDAM and HIDAM databases or when you expect to
insert new secondary index entries.

The recommended amount of free space depends on the amount of inserts. For example, if
you expect to insert 5% more root segments in a HALDB partition between reorganizations of
the index, you should specify at least 5% free space in the CIs. You should also specify free
space in the CAs. This creates empty CIs in the CA which are available for splitting CIs
without forcing the split of the CA. Free space is created uniformly across the data set. If the
inserts will be concentrated in a small part of the key range, free space might not be
beneficial. In this case, most of the free space will not be used. Instead, VSAM will have to

70 IMS Performance and Tuning Guide

continually split CIs and CAs to create room for the new entries. Unfortunately, you cannot do
much to reduce these splits.

5.6.2 HD space search algorithm

IMS has an HD space search algorithm. IMS uses this algorithm when inserting segments in
PHDAM, PHIDAM, HDAM, and HIDAM databases. The algorithm is documented in IMS
Version 9: Administration Guide: Database Manager, SC18-7806, under “How the HD Space
Search Algorithm Works.” In general, IMS attempts to place a new segment in the same block
or CI with the segment or RAP from which it is chained. If there is not space in this block or
CI, IMS may attempt to place the segment in the second most desirable block. This is the
nearest block or CI that was left free when the database or partition was loaded or
reorganized.

The search does not use the second most desirable block in two cases. First, if free block
frequency is not specified in the database or partition definition, there is no second most
desirable block. Second, HDAM and HIDAM DBD definitions can override the use of the
second most desirable block in the space search. This is done by specifying SEARCHA=1 on
the DATASET macro. Since the purpose of specifying the free block frequency factor is to
create free blocks or CIs for later inserts, SEARCHA=1 should not be specified except for
HDAM. This parameter is included to provide compatibility with old IMS releases that did not
have the second most desirable block step in the HD space search algorithm.

There is no option equivalent to SEARCHA=1 for PHDAM and PHIDAM databases. They
always include the search of the second most desirable block when the free space
percentage factor is specified.

5.6.3 Recommendation summary for free space

The recommendations for free space are:

� Use the “free block frequency factor” and/or the “free space percentage factor” to create
free space in HIDAM and PHIDAM databases.

� Use randomization parameters to create free space in HDAM and PHDAM databases. Do
not specify fbff and fspf for them.

� Use the IDCAMS DEFINE FREESPACE parameter to create free space in PHIDAM
primary indexes, HIDAM primary indexes, and secondary indexes.

� Specify SEARCHA=1 on the DATASET macros for HDAM databases.

� Specify SEARCHA=2 on the DATASET macros for HIDAM databases.

5.7 Randomization parameters

Randomizers and their parameters are specified in the DBD for HDAM. The DBD for PHDAM
only specifies the default values. The definition of the PHDAM partition specifies the values
used for the partition. Different partitions in a PHDAM database can have different
randomization parameter values.

The randomization parameters on the DBD statement have the following syntax:

� RMNAME=(mod, anch, rbn, bytes)

� mod is the randomizer module name. It must be specified.

Chapter 5. Database performance 71

� anch is the number of root anchor points per block. It defaults to 1. The maximum value is
255.

� rbn is the number of blocks in the root addressable area. It must be specified.

� bytes specifies the maximum number of bytes of a database record that can be stored in
the root addressable area in a series of inserts without a call to another database record.
The default is no maximum.

For PHDAM, these values can be defined with the HALDB Partition Definition utility (PDU) or
the DBRC INIT.PART or CHANGE.PART command. The DBRC command parameters are:

� RANDOMZR(name) is the randomizer module name.
� ANCHOR(value) corresponds to the anch parameter in the DBD.
� HIBLOCK(value) corresponds to the rbn parameter in the DBD.
� BYTES(value) corresponds to the bytes parameter in the DBD.

5.7.1 Randomizer

IMS supplies several randomizers. DFSHDC40 is appropriate for most databases and
HALDB partitions. We recommend you use DFSHDC40, unless you have specific knowledge
of your key distribution and you do not want the keys randomly spread across the RAPs.
DFSHDC40 spreads roots randomly across the RAPs in a HDAM database or a PHDAM
partition. You do not need to do any analysis of key distributions when you use DFSHDC40.

DFSHDC40 converts the key into a randomly chosen four-byte binary number. This number
is chosen independently of the number of RAPs in the database or partition. Then,
DFSHDC40 multiples this number by the number of RAPs in the database or partition and
divides the result by the maximum value. This assigns keys to RAPs in an order that is
unaffected by the number of RAPs. So if you unload a database or partition and change the
number of RAPs, the reload is still a sequential process.

In some cases, you might want to use a different randomizer. This should only occur when
you have knowledge of the key distribution and you do not want a random distribution of the
keys across the database or partition. For example, you might want to assign the keys to
RAPs in key sequence. The IBM product, IMS Sequential Randomizer Generator, can create
randomizers that do this.

5.7.2 Number of RAPs

The total number of RAPs for a HDAM database or PHDAM partition is the product of the
number of RAPs per block times the number of blocks in the root addressable area. When
more RAPs are used, the probability of a long chain of roots from a RAP is diminished. A
good general rule is that the total number of RAPs in a database or partition should be at
least twice the number of roots. When DFSHDC40 is used, the roots are distributed across
the RAPs in a Poisson distribution. When the total number of RAPs is twice the number of
roots, the distribution has the following characteristics:

� 79% of roots are the first root on their RAP chain.
� 18% of roots are the second root on their RAP chain.
� 3% of roots are the third root on their RAP chain.
� 0.38% of roots are past the third root on their RAP chain.

When the total number of RAPs is three times the number of roots, the distribution has the
following characteristics:

� 85% of roots are the first root on their RAP chain.
� 13% of roots are the second root on their RAP chain.

72 IMS Performance and Tuning Guide

� 1.5% of roots are the third root on their RAP chain.
� 0.13% of roots are past the third root on their RAP chain.

Since a RAP is only four bytes, the space used by RAPs is rarely significant.

5.7.3 Size of root addressable area

The root addressable area (RAA) is the set of OSAM blocks or VSAM CIs that holds RAPs.
Other blocks in the data set contain the overflow area. When the RAA is too small, the
segments in a database record are often stored in overflow. Reading them requires reading
the RAP block and reading blocks in the overflow area. When the RAA is too large, there is
unnecessary unused space in the RAA. A sequential read of the database or partition has to
read more blocks. A good general rule is that the RAA should be 35% larger than the size of
all of the segments in the HDAM database or PHDAM partition. This creates approximately
25% free space. Larger sizes may be desirable because they may help avoid the need for
reorganizations. They increase the probability that IMS will place segments in the block
containing the RAP from which they are chained.

5.7.4 The BYTES parameter

The bytes parameter specifies the maximum number of bytes of a database record that may
be stored in the root addressable area in a series of inserts without a call to another database
record. This includes inserts that are done by reorganizations. When you reorganize a
database or partition any segment which causes the database record to exceed this
parameter is placed in overflow. This reserves space for segments of other database records.
It helps avoid situations where exceptionally large database records force other database
records into overflow. A good general rule is that the bytes parameter should be twice the
average database record size. This assumes that all of the segments in the database are in
the first data set group. This general rule might not apply to some databases. If you are aware
of your database record size distributions, you might want to use other values for bytes. The
bytes parameter does not affect any segments that are in other data set groups.

5.7.5 Specifying randomization parameters for PHDAM

The randomization parameters used for PHDAM partitions are defined in the partition
definitions. The DBD for PHDAM only specifies the default values. If you change a PHDAM
DBD, the randomization values used by its partitions are not changed. To modify the
parameters for a partition, you must make changes to the partition definition, which is stored
in the RECONs. You can do this with either the HALDB Partition Definition utility (PDU) or a
DBRC CHANGE.PART command.

5.7.6 Recommendation summary for randomization parameters

The general recommendations for randomization parameters follow. You might be aware of
reasons for using different values. We recommend:

� Use DFSHDC40 for the randomization module.

� The total number of RAPs in a database or partition should be at least twice the number of
roots.

� The root addressable area (RAA) size should be 35% larger than the size of all of the
segments in the first data set of an HDAM database or a PHDAM partition.

� The bytes parameter should be twice the average database record size.

Chapter 5. Database performance 73

5.7.7 Monitoring HDAM databases

To monitor a HDAM database, periodically run a pointer checker utility, such as IBM IMS
High Performance Pointer Checker for z/OS, depending on database activity, to check the
packing density of the database.

90% or more of the roots should be in their home block (HB). This just means that the roots
are in the block to which they actually randomized. Look at Example 5-1 for reference.

10% or less of roots in the HB - 1 or HB + 1 is acceptable.

If roots are present in “BEYOND” or “OVERFLOW”, the database randomizing parameters
should be tuned, and then the database reorganized. When HDAM attempts to retrieve a
root, it takes the root’s key and passes it through a hashing algorithm and “randomizes” it. It
then comes up with the RAP in the block that the root is supposed to be in. IMS then goes to
that block and looks for the key. If the root is not present in that block, then it must chain
through subsequent blocks until it finds it. If roots are not stored close to the home block, I/O
can become a problem.

Example 5-1 High performance pointer checker: distribution of root segments

IMS HIGH PERFORMANCE POINTER CHECKER FOR z/OS "DB RECORD DISTRIBUTION STATISTICS REPORT"
5655-K53 DATE: 09/16/2006 TIME: 18.15.10 FABPMAIN

DBNAME: DHZDBCP1 DB#: 00E DSG#: 01 DDNAME: DHZDBCP1 DSNAME: PGMZ1.DHZBU.DHZDBCP1.G5186V00

TOTAL NUMBER OF SEGMENTS (ROOTS + DEPENDENTS) IN THE DATA SET = 539313
MAXIMUM ROOTS PER BLOCK = 12

DISTRIBUTION OF ROOT SEGMENTS (HDAM/PHDAM ONLY)

 NUMBER OF
 LOCATION ROOTS PERCENTAGE
 ---------------------- ---------- ----------
 HOME BLOCK - (11-) 10 0.0 %
 HOME BLOCK - 10 0 0.0 %
 HOME BLOCK - 9 0 0.0 %
 HOME BLOCK - 8 0 0.0 %
 HOME BLOCK - 7 0 0.0 %
 HOME BLOCK - 6 0 0.0 %
 HOME BLOCK - 5 0 0.0 %
 HOME BLOCK - 4 0 0.0 %
 HOME BLOCK - 3 0 0.0 %
 HOME BLOCK - 2 0 0.0 %
 HOME BLOCK - 1 0 0.0 %
 HOME BLOCK - 1 0 0.0 %
 HOME BLOCK 189,795 100.0 %
 HOME BLOCK + 1 0 0.0 %
 HOME BLOCK + 2 0 0.0 %
 HOME BLOCK + 3 0 0.0 %
 HOME BLOCK + 4 0 0.0 %
 HOME BLOCK + 5 0 0.0 %
 HOME BLOCK + 6 0 0.0 %
 HOME BLOCK + 7 0 0.0 %
 HOME BLOCK + 8 0 0.0 %
 HOME BLOCK + 9 0 0.0 %
 HOME BLOCK + 10 0 0.0 %
 HOME BLOCK + (11-) 8 0.0 %
 OVERFLOW 0 0.0 %
 ---------------------- ---------- ----------

74 IMS Performance and Tuning Guide

 TOTAL 189,813 100.0 %

In order to tune the database you need to know how long the average database record is. In
Example 5-2, the average database record length for the DHZDBCP1 database is 159 bytes.

Example 5-2 High performance pointer checker: database record statistics

IMS HIGH PERFORMANCE POINTER CHECKER FOR z/OS "DATABASE STATISTICS REPORT"
5655-K53 DATE: 09/16/2006 TIME: 18.15.10 FABPMAIN

DBNAME: DHZDBCP1 DB#: 00E

DATABASE RECORD STATISTICS

 SEGMENT <---- SEGMENT LENGTH ---> <-AVERAGE OCCURRENCES-> AVG LENGTH CUMULATIVE
SC LV DG NAME OCCURRENCES PRFX + DATA = TOTAL PER ROOT PER PARENT /DB RECORD LENGTH
-- -- -- -------- ----------- ---- ------- ------- ---------- ----------- ---------- ----------
01 01 01 DHZSBC00 189,813 10 55.0 65.0 1.0 65.0 65.0
02 02 01 DHZSBCMD 349,500 6 45.0 51.0 1.8 1.8 93.9 158.9
-- -- -- -------- ----------- ---- ------- ------- ---------- ----------- ---------- ----------
TOTALS 539,313 AVERAGE DB RECORD LENGTH = 158.9
 AVERAGE DB RECORD PREFIX LENGTH = 21.0
NOTE : 'V' INDICATES THAT 'DATA' SHOW AVERAGE VALUES FOR A VARIABLE LENGTH SEGMENT (IF ANY)

In Example 5-2, the average database record length is 158.9 bytes on 189,813 root
segments. If you have a tool that shows a histogram of the database record length with a
running cumulative total and a percentage of total roots, then you would be able to find that
the 95th percentile of the records are this size, say 300 bytes, and tune for that size and not
the average database record length. See Example 5-3.

Example 5-3 Histogram of database record sizes

 HISTOGRAM OF DATABASE RECORD LENGTH

 BYTES OCCURRENCEY % CUM %
 --------------- ----------- ----- -----
 - 100 0 0.0% 0.0%
 101 - 200 1,035,115 66.9% 66.9%
 201 - 300 234,918 15.2% 82.1%
 301 - 400 100,143 6.5% 88.6%
 401 - 500 31,870 2.1% 90.7%
 501 - 600 30,262 2.0% 92.6%
 601 - 700 15,548 1.0% 93.6%
 701 - 800 15,247 1.0% 94.6%
 801 - 900 25,592 1.7% 96.3%
 901 - 1,000 26,474 1.7% 98.0%
 1,001 - 2,000 25,565 1.7% 99.6%
 2,001 - 3,000 5,573 0.4% 100.0%
 3,001 - 4,000 6 0.0% 100.0%
 4,001 - 5,000 0 0.0% 100.0%
 5,001 - 6,000 0 0.0% 100.0%
 6,001 - 7,000 2 0.0% 100.0%
 7,001 - 8,000 0 0.0% 100.0%

 AVERAGE DATABASE RECORD SIZE = 25

Chapter 5. Database performance 75

In the histogram in Example 5-3 on page 75, the average database record length is 251
bytes. But the 95th percentile would be 900 bytes. We recommend that you tune for the 95th
percentile.

5.7.8 Loading or reloading HDAM databases

Blocks must be preformatted in HDAM prior to IMS storing records in them. When the first
record is inserted into a block, that block, along with all prior blocks, is formatted. This can be
a source of significant I/O. To avoid this situation, a high-value (x'FFFF') record can be
inserted to ensure all of the blocks are formatted prior to the user accessing the database.
This should always be done if the randomizer used is DFSHDC40.

When reloading, if you are reallocating the database equal to or smaller than the original, all
of your blocks should already be preformatted so that you do not have to do anything
additional. If you are reallocating it larger, or the database was incorrectly loaded the first
time, a high-value record needs to be loaded. Check with the programmers for that database
to determine if you have to delete the high-value record after you are done, or whether their
programs check for it and ignore it.

If, all of a sudden, an unusually high number of roots appear in overflow, make sure that a job
did not run (DL/I) using a DBD that has a different RAA size (test DBD), which added records
out to overflow. You cannot access these. HD reload probably ABENDs with an “LB”
(duplicate keys). HD unload picks up the records, because unload does not use the DBD; it
just sequentially unloads the segments.

5.8 Fixed length as opposed to variable length segments

You can define segments as either fixed length or variable length. You define a fixed length
segment by specifying one value for the BYTES= parameter on the SEGM statement for the
segment. You define a variable length segment by specifying two values for the BYTES=
parameter. A specification of BYTES=(2000,100) defines a variable length segment with a
maximum size of 2 000 bytes and a minimum size of 100 bytes. The number of bytes
specifies the size of the data portion of the segment. It does not include the size of the
segment prefix.

The maximum size for a segment is limited by the record size of the data set, which contains
the segment type. The minimum size of variable length segments is the minimum size stored
in the data set. If the segment is sequenced, the minimum size must be large enough to
include the key field with one exception. If the segment is compressed and key compression
is used, the minimum size can be as small as four bytes.

Variable length segments begin with a two-byte length field. Programs use this field to
determine the size of the segment. The size specified by an application program can be
smaller than the minimum size. For example, a program might create a segment with “20” in
the length field even when the minimum size is 30 bytes. In this case, IMS stores an extra 10
bytes in the data set. Later retrievals of the segment return a 20 byte segment to application
programs. The minimum size that a program specifies must be large enough to include the
key field for sequenced segments.

If you have a variable amount of data that could be placed in one segment, you have two
basic choices in your database design. You could use a variable length segment or you could
use a fixed length segment large enough to hold the maximum amount of data. The following
explains the advantages and disadvantages of these choices.

76 IMS Performance and Tuning Guide

5.8.1 Variable length segment

A variable length segment is the natural way to store a variable amount of data. It uses the
minimal amount of space but could require extra I/Os. If a replace call increases the size of a
segment, the larger segment might not fit in the same space that the smaller segment
occupied. For HISAM, this could cause the segment to move to another logical record in the
overflow data set. It could also force IMS to move other segments in the database record.
This was discussed under “Hierarchical indexed sequential access method” on page 54. This
makes variable length segments less attractive for HISAM databases.

For HD access methods, IMS does not move the prefix when you replace a segment. If the
larger segment does not fit in the previous location, it uses another technique. It splits the
segment by moving the data portion of the segment elsewhere and adding a pointer in the
prefix to the data portion. This was discussed under 5.2.3, “HD access methods” on page 60.
Splitting the segment can cause extra I/Os because the prefix and the data portions of a
segment might be in different blocks.

If you do not change the length of the segment after you insert it in the database, you should
define a variable length segment. This results in optimal space usage. Because you do not
change the length, you avoid the overhead caused by movement in HISAM or by split
segments with HD access methods. If you change the length of the segment, your choice is
not obvious. A variable length segment causes extra overhead for moving the segment, but it
optimizes the use of space. A good practice with variable length segments is to specify a
minimum size, which avoids the splitting of segments by most replace calls. For example, you
could make the minimum size large enough to hold 80 or 90 percent of the segments. Only
the very large segments would be subject to being split.

5.8.2 Fixed length segment

A fixed length segment must be large enough to hold the maximum amount of data for a
segment. The importance of this disadvantage depends on the range for the segment. If the
maximum amount of data is much larger than the typical amount, this can have a significant
effect. It could make database records span multiple blocks unnecessarily. Fixed length
segments are easily handled by replace calls. If a replace call adds more information to the
segment, it does not grow in size. So the replaced segment can always fit in the previously
occupied space. This avoids the HISAM movement or HD split segment considerations.

If you update the segment frequently, you might want to use a fixed length segment. This
depends on the trade-off between the extra space required for the segment as opposed to the
potential I/O savings.

Fixed length segments, which are compressed, have the space usage characteristics of
variable length segments. Replacements of these segments can force movement of them in
HISAM or split segments with HD access methods. See 5.12, “Compression” on page 84 for
a further explanation of compression.

5.8.3 Recommendations for fixed as opposed to variable length segments

The recommendations for choosing between fixed length and variable length segments are:

� If segments are rarely replaced and contain variable amounts of data, you should define
them as variable length.

� If segments are frequently replaced and the amount of data stored in the segments varies
within a small range, you should define the segments as fixed length.

Chapter 5. Database performance 77

� If segments are frequently replaced and the amount of data stored in the segment varies
over a large range, your choice between fixed length and variable length segments is a
trade-off between space use and I/O requirements. You can use a minimum size to lessen
the number of split segments.

� If a variable length segment is frequently replaced, consider specifying a minimum size
that accommodates most segment occurrences.

� If a HISAM segment is frequently replaced with a different size segment and other
segments follow it in the hierarchy, do not define it as variable length. Either use an HD
access method or define the segment as fixed length large enough to hold the maximum
size.

5.9 Pointer options

IMS allows you to specify the types of pointers that are used between segments in HDAM,
PHDAM, HIDAM, and PHIDAM databases. Only use the pointers that are needed. The fewer
the number of pointers, the less maintenance that IMS has to perform, and therefore, the
faster the application. This section provides advice about choosing the pointers for certain
types of segments.

5.9.1 Hierarchic as opposed to child and twin pointers

IMS provides two types of pointer schemes: hierarchic pointers or child and twin pointers.

Hierarchic pointers can be specified as either forward or both forward and backward. A
hierarchic forward pointer points to the next segment in the database record hierarchy.
Hierarchic backward pointers point from a dependent segment to the previous dependent
segment in the database record.

Figure 5-2 shows an example of hierarchic pointing with forward pointers. Each dependent
segment has only one pointer. It points to the next segment in the hierarchy. To get from the
root segment A to its first D child segment, IMS must traverse all of the B and C segments
that are children of A. Root segments have a hierarchic pointer to their first dependent
segment and another pointer to the next root. Hierarchic backward pointers point from a
dependent segment to a previous dependent segment.

Figure 5-2 Hierarchic pointers

AA

B DC

A

78 IMS Performance and Tuning Guide

Child and twin pointers are an alternative to hierarchic pointers. Child pointers can be either
child first or child first and last. A child first pointer in a segment points to the first child of a
segment type. A child last pointer points to the last child of a segment type. If a segment has
multiple children types, it has multiple child first pointers and, possibly, multiple child last
pointers. Twin pointers can be either forward or both forward and backward. They point to
other segments of the same type, which are under the same parent.

Figure 5-3 illustrates the use of child first and twin forward pointers. Segment A has three
child first pointers. The first points to the first B segment under A. The second points to the
first C segment. The third points to the first D segment. Twin pointers point to the next
segment of the same type. There are twin pointers between root segments and between
dependent segments.

Figure 5-3 Child and twin pointers

For most IMS databases, child and twin pointers are preferable to hierarchic pointers.
Hierarchic pointers take less space, because each dependent segment has only one pointer
and each root segment has only two pointers. They have the disadvantage of usually
requiring more accesses to find the desired segment. This is especially true when there are a
large number of segments in a database record. Hierarchic pointers are not available with
PHDAM and PHIDAM databases.

5.9.2 Forward only as opposed to forward and backward pointers

Hierarchic and twin pointers can be forward only (one forward pointer) or both forward and
backward (a forward pointer and a backward pointer). Backward pointers are useful when
segments are deleted from a chain and the previous segment in the chain has not been
accessed. This can occur when a segment is entered through a logical relationship. If the
backward pointer does not exist, IMS must find the previous segment in the twin chain or
hierarchic chain. It does this by following the parent pointer to the segment’s parent and
following either the hierarchic or child and twin pointers until it reaches the previous segment
in the chain. It recognizes the previous segment, because its pointer points to the segment
being deleted.

The inclusion of backward pointers requires more space and more processing for inserts and
deletes. Both the previous and next segments in the chain must have their pointers adjusted
when a segment is inserted or deleted. Because the only need for backward pointers is for
deletion by a logical path, backward pointers should not be used unless the database
satisfies all of the following conditions:

� The database participates in a logical relationship.

B DC

AAA

Chapter 5. Database performance 79

� Segments are deleted using the logical relationship path.
� There are typically many segments in the chain which contains the segment to be deleted.

5.9.3 HIDAM and PHIDAM root segments

For HIDAM root segments, you can specify no twin pointers, forward only twin pointers, or
both forward and backward twin pointers. When you specify no twin pointers, roots are
accessed using the index. When you specify both forward and backward twin pointers, roots
are accessed by the twin forward pointer when proceeding from a previous root segment with
get next (GN) processing. This eliminates the need for accessing the index. When you
specify forward only twin pointers, they are not used for accessing segments. IMS maintains
them, but does not use them. This creates overhead with no benefits; therefore, you should
never define forward only pointers for HIDAM root segments. PHIDAM does not allow the
specification of forward only twin pointers on root segments. It only allows either no twin or
both forward and backward twin pointers.

When you specify both forward and backward twin pointers for HIDAM or PHIDAM roots, IMS
must maintain the twin chain when roots are inserted and deleted. It must adjust the pointers
in the previous and following roots. This overhead can be significant when there are frequent
insertions and deletions of roots.

The overhead of using the index to access the next root in a HIDAM database or PHIDAM
partition might not be significant. An index CI typically holds many index entries. This means
that accessing the next root typically does not require reading another index CI. For this
reason, you should not specify twin forward and backward pointers for most HIDAM or
PHIDAM root segments.

If you are always adding the next higher key to the database, then TB is a better choice than
NOTWIN, because of how IMS locks on the high-values record and the highest key in the
database. If the updates are always somewhere in the middle of the database, then NOTWIN is
a better choice.

There is a reason why some installations define twin forward and backward pointers on
(P)HIDAM roots. If the index is damaged, the use of twin forward and backward pointers
allows you to unload the database or partition if the first pointer in the index is good. Unload
uses the twin forward pointers to find successive roots in the database. You can use the
unload file to reload the database. This recreates the index. Without these pointers, roots
must be found with the index. This would prevent the successful unloading of the database
with a damaged index. In this case, you would need to recover the index from an image copy
and log records or you would need to rebuild the index by using a tool, such as IBM IMS
Index Builder for z/OS.

5.9.4 Unsequenced dependent segments

When you define a dependent segment, you have the option of specifying a sequence field.
IMS maintains segments with sequence fields in key sequence. IMS orders segments without
sequence fields by a combination of the rules defined for the segments and the order in which
application programs insert the segments.

Some applications rely on segments being returned in key sequence. Others do not depend
on this sequencing. If applications do not require that segments are in key sequence, it is best
not to specify a sequence field. Then IMS does not necessarily have to follow the twin chain
when inserting the segment.

80 IMS Performance and Tuning Guide

For segments without sequence fields, the location of the inserted segment depends on the
last subparameter of the RULES= parameter on the SEGM statement for the segment. The
possible values are FIRST, LAST, and HERE. LAST is the default. HERE causes IMS to
insert the segment at the current location. This is the least overhead. FIRST causes IMS to
insert the segment at the beginning of the twin chain. IMS finds this location with minimal
overhead, because there is a pointer in the parent to the beginning of the twin chain. LAST
can cause significant overhead with long twin chains. You can avoid this by specifying a
Physical Child Last pointer from the parent to this segment type. Then IMS can go directly to
the last segment in the twin chain. So if you specify LAST or use it as the default, you should
define a physical child last pointer from the parent when there might be a long twin chain. This
advice only applies to segments without sequence fields.

5.9.5 Defining hierarchical, physical twin, and physical child pointers

You define hierarchic pointers by specifying PTR=H or PTR=HB on SEGM statements. Use
PTR=HB to specify both forward and backward pointers.

You define twin pointers by specifying PTR=T or PTR=TB on SEGM statements. Use
PTR=TB to specify both forward and backward pointers.

You define physical child pointers in the SEGM statement for the child. The second
subparameter of the PARENT parameter is either SNGL or DBLE. SNGL causes IMS to
place a physical child first pointer in the parent segment. DBLE causes IMS to place both a
physical child first (PCF) and a physical child last (PCL) pointer in the parent segment. The
PCL pointer is helpful if there are a significant number of Segment Search Arguments (SSAs)
that use the last command code, “*L”. SNGL is the default. Example 5-4 shows an illustration
of a SEGM statement for a child segment whose parent will contain both physical child first
and physical child last pointers to it.

Example 5-4 Definition of physical child first and physical child last pointers

SEGM NAME=EXPR,BYTES=20,PTR=T,PARENT=((NAME,DBLE))

5.9.6 Recommendation summary for pointer options

The recommendations for pointer options are:

� Use child and twin pointers instead of hierarchic pointers.

� Do not specify twin backward pointers for dependent segments unless you satisfy the
criteria for deletes with logical relationships.

� Never specify twin forward only pointers for HIDAM roots.

� Never specify twin forward and backward pointers for HDAM roots.

� Specify no twin pointers for HIDAM and PHIDAM roots.

� If you specify RULES=(,LAST) or use last as the default for segments without sequence
fields, you should define a physical child last pointer from the parent if there might be a
long twin chain.

5.10 SCAN= parameter on the DATASET statement

The SCAN= parameter on the DATASET statement affects searches for free space. It is the
number of cylinders that IMS scans when searching for space to insert a segment in a HDAM
or HIDAM database. When a segment is inserted, IMS tries to place it in the “most desirable

Chapter 5. Database performance 81

block.” Generally, this is the block that contains the segment or RAP from which the inserted
segment will be chained. Exceptions are explained in the “How the HD Space Search
Algorithm Works” section of the IMS Version 9: Administration Guide: Database Manager,
SC18-7806, manual. If IMS does not find space in this block, it uses the HD space search
algorithm to find space in another block. In general, the algorithm tries to find space in a
nearby block on the same cylinder. If it does not find available space there, the SCAN
parameter limits the number of adjacent cylinders that IMS examines when it looks for space.
If IMS does not find space within this limit, it inserts the segment at the end of the data set.

SCAN=0 causes IMS to search for blocks in the buffer pool which are on the cylinder
containing the most desirable block. SCAN=1 causes IMS to scan the pool for blocks on the
two adjacent cylinders also. SCAN=2 causes IMS to scan the pool for blocks on the two
cylinders which are on either side of the cylinder containing the most desirable block. IMS
must scan its buffer pool once for each cylinder within the scan range. So with SCAN=3, IMS
might scan the buffer pool seven times, once for each cylinder within the limit.

You should always specify SCAN=0. The default is SCAN=3. The default was set many years
ago when cylinders were much smaller and buffers pools contained fewer buffers. Today, a
3390 cylinder holds over 0.5 megabytes, and many buffer pools have thousands of buffers.
Multiple scans of these pools can be costly. In any case, there is no particular advantage in
putting the segment two or three cylinders away. It can just as easily be handled when placed
at the end of the data set.

You cannot specify SCAN for HALDB databases. The space search algorithm for them always
operates as though SCAN=0 were specified.

Recommendation summary for the SCAN parameter
Always specify SCAN=0 on DATASET statements for HDAM and HIDAM databases.

5.11 Multiple data set groups

PHDAM, PHIDAM, HDAM, and HIDAM databases can have multiple data set groups. You can
use multiple data set groups to store different segment types in different data sets. You can
store multiple segment types in the same data set, but all instances of the same segment type
are stored in the same data set. Figure 5-4 on page 83 is an illustration of the use of multiple
data set groups.

82 IMS Performance and Tuning Guide

Figure 5-4 Multiple data set groups

In this illustration, segment types A and C are stored in the first data set group. Segment type
B is stored in data set group 2. Segment types D, E, and F are stored in data set group 3.

You can use data set groups for various purposes.

First, you can use them to move infrequently used segments to their own data sets. Then the
other segments in the database are stored in fewer blocks and might require fewer I/Os to
access. This could be especially important in sequential jobs which read all of some segment
types but do not read other segment types. In Figure 5-4, data set group 3 might have been
created for this purpose.

Second, you can create data set groups to reduce the number of blocks which are read to
access a segment. In Figure 5-4, data set group 2 might have been created for this purpose.
If there are many instances of segment B, moving segment B to its own data set group
increases the probability that the C segments will be in the same block with the root segment.
This is useful if C segments are frequently accessed, but B segments are rarely accessed.

Third, you can use data set groups for space management reasons. With HD access
methods, IMS keeps a bitmap indicating which blocks have room for the largest segment
allowed in the data set. The space search algorithm uses this bitmap when looking for space
for inserts. Segment types with very large maximum sizes can make the bitmap misleading.
The bitmap might indicate that there is not space in a block for the largest segment in the data
set, but there might be plenty of free space for smaller segments. Some shops isolate
extremely large segment types in their own data set. This is beneficial for space search in
other data sets. The bitmaps in the other data sets are not skewed by the large segment
types. This technique is especially beneficial when there are lots of inserts of the smaller
segment types.

Fourth, you can use data set groups to provide more capacity for HDAM or HIDAM
databases. You cannot partition these databases. If you use only one data set, the database
would be limited to 8 gigabytes with OSAM or 4 gigabytes with VSAM. Because you can
define up to 1 001 partitions for PHDAM and PHIDAM databases, you do not need multiple
data set groups to provide database capacity for them. Usually, it is preferable to convert a
HDAM database to PHDAM or a HIDAM database to PHIDAM when additional capacity is
needed.

FE

B DC

A

Data set
group 2

Data set
group 1

Data set
group 3

Chapter 5. Database performance 83

You need to know the access patterns that applications use before you can make the best
decisions about the use of multiple data set groups. Multiple data set groups spread database
records across blocks in different data sets. If you use them unnecessarily, you might cause
IMS to do additional I/Os. You should define multiple data groups only when you have a
reason to do so.

For HDAM and HIDAM databases, you use DATASET statements to specify multiple data set
groups. IMS assigns segments to the data set specified on the preceding DATASET
statement.

For PHDAM and PHIDAM databases, you assign a segment to a data set by specifying the
DSGROUP= parameter on the SEGM statement.

Recommendation summary for multiple data set groups
The recommendations for the use of multiple data set groups are:

� Define multiple data set groups only when you have a reason to do so. You should use
them primarily to reduce I/Os for databases with certain characteristics.

� You can use multiple data set groups to provide additional capacity for HDAM and HIDAM
databases, but conversion to PHDAM or PHIDAM is preferable.

� Do not use multiple data set groups with PHDAM or PHIDAM databases to provide
capacity. Instead, create more partitions for these databases. Multiple data set groups
might be appropriate for PHDAM or PHIDAM databases to reduce I/Os.

5.12 Compression

You can compress segments by using Segment Edit/Compression routines. This reduces the
amount of space that is required on DASD for the segments. It does not affect the view of the
segments by application programs. You can use compression with PHDAM, PHIDAM,
HISAM, HDAM, and HIDAM databases. You cannot use compression with PSINDEX,
SHISAM, or INDEX databases.

You specify compression with the COMPRTN= parameter on the SEGM statement. You can
use different specifications for different segment types. You can compress some segment
types in a database while not compressing others. You can use different compression
routines for different segment types.

IMS supplies a sample compression routine, DFSCMPX0, which implements run length
encoding. This reduces all strings of four or more repeating bytes to three bytes. It can give
excellent results for segments which contain many blanks, zeroes, or other values which
appear in consecutive bytes. IMS also supplies a facility for creating compression routines
which use special system hardware for compressing data. This is the Hardware Data
Compression facility. You give sample data to the facility and it produces a compression
dictionary which is optimized for the sample data. You can also purchase products which
supply compression routines and provide ease of use in maintaining and administering
compression. The IMS Hardware Data Compression Extended for z/OS product (program
number 5655-E02) in IBM DB2 and IMS Tools portfolio provides these capabilities.

Compression can significantly reduce the amount of space that is required for storing a
database. This can substantially reduce the number of reads and writes that are required for
processing the database. The reduction can be significant when the entire database, area, or
partition is processed. On the other hand, compression can also substantially increase the
CPU time that is required to process a database if you are not using Hardware Data

84 IMS Performance and Tuning Guide

Compression. The use of compression is a trade-off between storage, I/Os, and CPU
processing.

A more complete explanation of the use and implementation of compression with IMS is
given in A Guide to IMS Hardware Data Compression, WP100416. This guide is available at:

http://www.ibm.com/support/techdocs/atsmastr.nsf/WebIndex/WP100416

5.12.1 Key compression as opposed to data compression

If you implement compression, you have the option of specifying whether you want key
compression or only data compression. With key compression, the entire segment past the
prefix is compressed. With data compression, only the data following the key is compressed.
Key compression cannot be used with HISAM root segments. They must use data
compression.

Obviously, key compression produces greater space savings. But there is a cost. When a
database call needs to examine the key of a segment, IMS must invoke the exit routine when
the key is compressed. The exit routine does not have to expand the entire segment, but it
must expand the data through the key. This is not required when only the data is
compressed. An example is a get call which is qualified on the key where the segment is in a
long twin chain. IMS might have to look at many segments before it finds one that satisfies the
call. With key compression, this would require the expansion of many segments. With data
compression, only the segment which satisfies the call would be expanded.

The compression option you choose should depend on the amount of potential savings from
key compression as opposed to the extra processing it requires. This depends on the size of
the key, the location of the key in the segment, and the type of processing done against the
segment.

5.12.2 COMPRTN= parameter

The COMPRTN= parameter on the SEGM statement is used to specify a segment
edit/compression routine. The syntax of the COMPRTN= parameter is the following:

� For full function fixed length segments

COMPRTN=(Routine name,DATA or KEY,INIT,size,PAD)

� For full function variable length segments

COMPRTN=(Routine name,DATA or KEY,INIT)

There are five positional subparameters:

� Routine name

The first subparameter, routine name, identifies the name of the routine.

� DATA and KEY

The second subparameter indicates if all of the segment, including the key, is to be
compressed or if only the data past the key is to be compressed. DATA is the default. It
indicates that only the data past the key is to be compressed. KEY indicates that the key
and all of the data is to be compressed. KEY cannot be specified for HISAM root segments.

� INIT

The third subparameter, INIT, is optional. It indicates that the routine is driven at
initialization and termination. This allows the routine to do some special processing, such

Chapter 5. Database performance 85

http://www.ibm.com/support/techdocs/atsmastr.nsf/WebIndex/WP100416

as loading a table at initialization and deleting it at termination. Your exit routine
requirements determine if this parameter must be specified.

� Size and PAD

The fourth and fifth subparameters are valid only for fixed length segments. The fourth
subparameter has two possible meanings. It is either an “increment” size or a “PAD” size.
The fifth subparameter determines the meaning of the fourth subparameter. If the fifth
subparameter is omitted, the fourth subparameter is an increment size. If PAD is specified
for the fifth subparameter, the fourth subparameter is a PAD size.

An increment size should not be specified. The following is an explanation of its meaning
and why you should not specify it. An increment size is the number of bytes that the
routine can add to a fixed length segment's size. This capability is provided because a
compression routine algorithm could increase the size of a segment instead of decreasing
it. Increment values of 1 to 32 767 can be specified. If an increment size less than 10 is
specified or if no value is specified, an increment size of 10 is used. When PAD is
specified, an increment size of 10 is used. The increment size is not required for any
compression routines supplied by IMS or IBM products, such as IMS Hardware Data
Compression Extended. They never add more than one byte to a segment. Specification of
increment sizes is rarely required for any routines, because most compression routines
never increase a segment's size by more than 10 bytes.

A PAD size is used to specify a minimum size that the segment will be when written to
DASD. When compression reduces the segment's length to less than the PAD size, IMS
pads the segment to the PAD size before writing it to DASD. PAD sizes are never
required, but can be recommended for performance reasons.

The use of PAD is explained more thoroughly in A Guide to IMS Hardware Data
Compression, WP100416. It is available at:

http://www.ibm.com/support/techdocs/atsmastr.nsf/WebIndex/WP100416

5.12.3 Recommendation summary for compression

The recommendations for the use of compression are:

� Evaluate the use of compression. The space saved might not be worth the extra
processing required to compress and expand segments.

� Evaluate the use of key compression as opposed to data compression. Key compression
might not be advisable for segments which have long twin chains and which are frequently
processed by calls qualified on key fields.

� It might be wise to specify a PAD value for full function fixed length segments which are
compressed. This can reduce the likelihood that a segment's prefix and its data are placed
in separate blocks.

� Never specify the fourth subparameter (size) for COMPRTN= if you do not also specify the
fifth subparameter (PAD).

5.13 Encryption

Because encryption uses the Segment Edit/Compression exit routine on the SEGM
statement, all of the considerations for compression apply to encryption.

When you encrypt segments by using the Segment Edit/Compression exit, it does not affect
the view of the segments by application programs. In other words, as long as you are using
IMS to view the data, it is decrypted. You can use encryption with (P)HDAM, (P)HIDAM, and

86 IMS Performance and Tuning Guide

http://www.ibm.com/support/techdocs/atsmastr.nsf/WebIndex/WP100416
http://www.ibm.com/support/techdocs/atsmastr.nsf/WebIndex/WP100416

HISAM databases. You cannot use encryption with PSINDEX, SHISAM, or INDEX
databases.

You specify encryption with the COMPRTN= parameter on the SEGM statement. You can
use different specifications for different segment types. You could encrypt some segment
types in a database while not encrypting others. You do not have to use the same encryption
routine for every segment type.

Encryption can substantially increase the CPU time that is required to process a database.
When segments are encrypted, IMS must invoke an exit routine each time a segment is
inserted, replaced, or read. The use of encryption is a trade-off between data security and
CPU processing.

A more complete exposition of the use of encryption with IMS for the product IBM Data
Encryption Tool for IMS and DB2 Databases (program number 5799-GWD), can be found on
the DB2 and IMS Tools Web site:

http://www.ibm.com/software/data/db2imstools/db2tools/ibmencrypt.html

For more information, refer to the IBM Redbook IBM eServer zSeries 990 (z990)
Cryptography Implementation, SG24-7070.

5.14 Secondary indexes

You can define secondary indexes for PHDAM, PHIDAM, HDAM, HIDAM, and HISAM
databases. They are used primarily to provide an alternate key for retrieving records in a
database. You can also use them to provide an alternate sequence for sequential processing.

You define secondary indexes for PHDAM and PHIDAM databases with ACCESS=PSINDEX
on the DBD statement. Define secondary indexes for HDAM, HIDAM, and HISAM databases
with ACCESS=INDEX on the DBD statement.

The indexed databases must include LCHILD and XDFLD statements for their secondary
indexes.

5.14.1 Secondary index keys

The key for a secondary index is built by using one to five fields in the index source segment.
These fields can be noncontiguous. They are specified with the SRCH= parameter on the
XDFLD statement in the indexed database.

Unique keys as opposed to non-unique keys
Secondary indexes for HALDB (PHDAM and PHIDAM) databases must have unique keys.
Unique keys are not required for non-HALDB databases, but they are highly recommended.
You define unique keys by specifying U in the third subparameter of the NAME parameter in
the FIELD statement for the index key field. You define non-unique keys by specifying M. U is
the default.

You can create unique keys by defining subsequence fields. Subsequence fields are added to
the sequence fields so that a unique key can be created. These keys are the keys of the
secondary index KSDS. Application programs do not use subsequence fields when they
define a search using a secondary index. They use only the secondary index sequence fields.
Subsequence fields are defined with the SUBSEQ= parameter on the XDFLD statement in
DBDGEN.

Chapter 5. Database performance 87

http://www.ibm.com/software/data/db2imstools/db2tools/ibmencrypt.html
http://www.ibm.com/software/data/db2imstools/db2tools/ibmencrypt.html

For example, if you have an employee database, you might want to create a secondary index
based on employee last name. Of course, there might be duplicate last names among the
employees. Adding a subsequence field, such as employee serial number, would create
unique keys. In some cases, there might not be a field in the source segment which provides
uniqueness. IMS supplies system-related fields, which you can use to create uniqueness.
The system-related fields are the concatenated key field and the “/SX” field.

A concatenated key field contains the concatenated key of the target segment. The size of
this field depends on the size of the concatenated key. A “/SX” field is a unique value
generated by IMS. For non-HALDB databases, it is the 4-byte relative byte address (RBA) of
the target segment. For HALDB databases, it is the 8-byte Indirect List Key (ILK) of the target
segment. In most cases, the “/SX” field requires less space than the concatenated key field.
System-related fields are defined with special names in the NAME= parameter of the FIELD
statement. A concatenated key field is defined with a field name beginning with /CK. A “/SX”
field is defined with a field name beginning with /SX.

Non-unique keys have two disadvantages. First, they require a second data set for the
secondary index, the overflow data set. The second data set is an ESDS which contains the
duplicate keys. Second, each index entry requires an extra four bytes for the pointers which
chain possible duplicate entries. Since a /SX field requires only four bytes in non-HALDB
databases, it requires no more space than the duplicates pointer.

Application programs never see subsequence fields unless they process the secondary index
as a database.

5.14.2 Direct as opposed to symbolic pointers

Secondary indexes use three types of pointers. Non-HALDB secondary indexes use either
direct or symbolic pointers. HALDB secondary indexes use an extended pointer set (EPS).

You can use direct pointers with HDAM and HIDAM databases. They are four byte RBAs.
They point at the target segment. You can use symbolic pointers with HDAM, HIDAM, and
HISAM databases. Symbolic pointers are the concatenated key of the target segment. They
can be up to 255 bytes, depending on the size of the concatenated key. When using a
secondary index with symbolic pointers, IMS must traverse the target database record from
the root to the target segment. This might require accessing multiple OSAM blocks or VSAM
CIs. For this reason, direct pointers are more efficient when accessing target segments. This
is especially true when the target is several levels below the root in the database structure.
For indexes into HDAM databases, symbolic pointers cause IMS also to traverse from the
RAP to the root. This makes direct pointers even more attractive.

Symbolic pointers have a significant advantage over direct pointers when reorganizing the
indexed database. If you use direct pointers for a secondary index, you must rebuild it when
you reorganize the indexed database. This is required because the old direct pointers are no
longer valid, they point to the wrong places. If you use symbolic pointers, the secondary index
remains good when you reorganize the indexed database because the pointers are the
concatenated key of the target segment. Therefore, you do not have to rebuild the secondary
index.

The use of direct pointers as opposed to symbolic pointers for HDAM and HIDAM databases
is a trade-off. Direct pointers have two advantages. They are smaller and they provide more
efficient access to target segments. Symbolic pointers have the advantage of not requiring
rebuilds after reorganizations of the indexed database.

HALDB secondary indexes always use an extended pointer set (EPS). They do not use the
direct or symbolic pointers which non-HALDB secondary indexes use. The EPS contains an

88 IMS Performance and Tuning Guide

internal direct pointer to the target. The self-healing pointer process updates this pointer after
reorganizations of the indexed database. You do not have to rebuild a HALDB secondary
index when you reorganize the indexed database. The EPS tends to give HALDB secondary
indexes the advantages of both symbolic pointers and direct pointers. Access is direct, but
you do not have to rebuild the secondary index when you reorganize the indexed database.

You select symbolic pointers by specifying PTR=SYMB on the LCHILD statement in the
indexed database. You select direct pointers by specifying PTR=INDX on the LCHILD
statement. You must specify PTR=INDX on the LCHILD statement for HALDB.

5.14.3 Shared secondary indexes

Multiple secondary indexes for non-HALDB databases can reside in the same data set. This
is called shared secondary indexes. You should never use shared secondary indexes. When
multiple indexes share the same data set, a rebuild of any of the indexes requires a rebuild of
all of them. Shared secondary indexes are used when a CONST= parameter is defined on
the XDFLD statement in a DBDGEN.

5.14.4 Duplicate data

You can include duplicate data fields in secondary index entries. These are fields in the
secondary index which contain data from the source segment in the indexed database.
Duplicate data fields are defined with the DDATA= parameter on the XDFLD statement in
DBDGEN. Duplicate data fields are not part of the key of the secondary index. Duplicate data
is only available to application programs which process the secondary index as a database,
not as an index. That is, the DBDNAME= parameter in the PCB of the PSB references the
secondary index, not the indexed database. Duplicate data fields make the secondary index
larger. You should define them only when applications are designed to process the
secondary indexes as databases. However, applications which take advantage of duplicate
data can be more efficient. This occurs because they do not have to access the indexed
database to have access to the data in the duplicate data fields. An application program
never sees duplicate data unless it is processing the secondary index as a database.

5.14.5 User data

You can include user data fields in secondary index entries. These fields are not explicitly
defined in the DBD. They are created when the size of the secondary index entry (BYTES=
parameter on the SEGM statement) is larger than that required to hold the explicitly defined
fields. IMS does not maintain user data fields. User programs, which process the secondary
index as a database, maintain these fields. User data fields are rarely used. If you rebuild the
secondary index, IMS does not rebuild the user data fields. The data is lost. For this reason,
non-HALDB secondary indexes, which use direct pointers, should never have user data
fields. HALDB secondary indexes and non-HALDB secondary indexes, which use symbolic
pointers, do not need to be rebuilt after reorganizations; therefore, they might be able to use
user data fields. An application program never sees user data fields unless it is processing
the secondary index as a database.

5.14.6 Sparse indexing

Sparse indexing allows you to build secondary indexes, which do not have entries for every
source segment in the indexed database. This can be useful with some applications. They
might want a secondary index with entries for only certain segments. A sparse index can
simplify the application and reduce the size of the secondary index.

Chapter 5. Database performance 89

You can create a sparse index with either of two techniques. First, you can specify the
NULLVAL= parameter on the XDFLD statement in the DBDGEN. If the indexed field or fields
contain this value in every byte, IMS does not create an index entry for this source segment.
Second, you can specify the EXTRTN= parameter on the XDFLD statement. IMS calls the
specified exit routine for every insert, delete, or replace of the source segment. The exit
routine can inspect the source segment and decide whether an index entry should be created
for it. You can combine both techniques. If you specify both the NULLVAL= parameter and
the EXTRTN= parameter, IMS creates the secondary index entry only if neither technique
suppresses the entry.

For more information about coding sparse indexes, look at the chapter, “Secondary Index
Database Maintenance Exit Routine”, in the IMS Version 9: Customization Guide,
SC18-7817. There are two assembler examples of sparse indexing in the appendix: “Source
segment” on page 238 and “Index segment” on page 241.

5.14.7 Recommendation summary for secondary indexes

The recommendations for secondary indexes are:

� Use unique keys for secondary indexes. You may use /SX fields to create uniqueness.

� Never use shared secondary indexes.

� Specify duplicate data fields only when applications are designed to use them.

� Define space for user data fields only when applications are designed to use them and
when rebuilds of the secondary index are not required.

5.15 Fast Path performance considerations
This section covers topics related to Fast Path processing.

IMS Fast Path includes two database organizations:

� Data Entry Database (DEDB)
� Main Storage Database (MSDB)

DEDBs are similar to HDAM but have some significant differences that provide even higher
performance, capacity, and availability. MSDBs cannot be used in a data sharing
environment, and we do not discuss them here. We recommend DEDB Virtual Storage
Option instead of MSDB.

5.15.1 Virtual Storage Option (VSO)
VSO provides the user with the best features of data entry databases and the access time
and parallelism of main storage databases. VSO data resides in a z/OS data space in virtual
storage, so response times for DL/I calls are close to memory access times.

5.15.2 Field (FLD) calls support
The FLD call can be used to access a field within a segment in a DEDB. The more relaxed
locking requirements of the FLD call (as opposed to GHU and REPL calls) provide a higher
degree of parallelism. More transactions can update the data concurrently without incurring
contention, and thus, this call is ideally suited to data that is heavily updated.

90 IMS Performance and Tuning Guide

5.15.3 Shared Virtual Storage Option (SVSO)
IMS uses the Coupling Facility to allocate shared VSO data instead of z/OS data spaces. This
makes VSO DEDBs accessible for all the IMS systems in a data sharing group.

5.15.4 DEDB general performance considerations
In this and following sections, we cover general performance considerations of DEDBs,
sequential processing on DEDBs, sequential dependents sharing, and performance tips for
VSO and SVSO implementation as well.

A DEDB is a hierarchical database designed to provide efficient storage and access to large
volumes of data with a high level of availability.

As is the case with DL/I databases, some performance problems do occur with DEDBs and
can be solved by following the recommendations we give below.

5.15.5 DASD or channel contention for I/O on DEDB
One possible solution to the problem of DASD contention with DEDBs is to alter the use of
area data sets. It might be possible to identify the parts of the database that are heavily
accessed (called hot spots) and move these records either to another existing area or to a
new area.

We recommend that you spread the hot spots around, if possible, so that the activity is evenly
dispersed between the area data sets on fast DASD devices.

5.15.6 OTHREAD contention
When buffers that are waiting to be written start queuing for OTHREADs, buffer contention
increases because the locks on the data in the buffers are not released until the buffers are
written to DASD. If the problem is on the buffer side, we recommend that you split the area
across several DASD volumes.

However, the problem could be an output thread shortage. We also recommend that you set
the OTHR system execution parameter to a value big enough so that the write buffers are not
queued because of insufficient numbers of SRBs.

The OTHREAD Analysis section of the IMS Performance Analyzer Fast Path Analysis report
gives useful information about the value to specify for the OTHR parameter. If the Max Value
column of the Active OTHREADs section is close or equal to the OTHR parameter, we
recommend that you increase this parameter value.

The output thread processing for VSO and SVSO DEDBs is somewhat different. Refer to
“VSO output threads” on page 94 for more details.

5.15.7 Increased I/O or CI contention for independent or dependent overflow
If your system experiences I/O or CI contention for the Independent Overflow (IOVF) or the
Dependent Overflow (DOVF) parts, we recommend that you reorganize the database. We
recommend that you monitor the usage of IOVF and DOVF periodically to ensure that the
performance of the databases is not impacted by I/O or CI contention.

Chapter 5. Database performance 91

5.15.8 Overflow Buffer Allocation (OBA) latch wait
If your system experiences waits for the overflow buffer allocation latch, we recommend that
you increase the value of the Normal Buffer Allocation parameter for the dependent regions.
This reduces the OBA usage and consequently the latch conflicts for it.

When doing so, you should also take care when increasing the value of the DBBF system
execution parameter. If you are not careful, ABENDs can occur when starting dependent
regions because of a shortage of Fast Path buffers. Refer to 5.15.17, “IMS Fast Path buffers”
on page 101 for recommendations for this parameter.

The Latch Conflict Statistics of IMS Performance Analyzer Internal Resource Usage report
show the number of IWAITs for every latch. The OBA latch IWAIT numbers should always be
zero or close to zero.

5.15.9 DEDB sequential processing
If you have applications that use a PCB to sequentially process (read-only scans or updates)
one or more areas of a DEDB, we recommend that you consider using High Speed
Sequential Processing.

This is requested by using PROCOPT=Hx. There are no special hardware requirements to
implement HSSP.

Sequential processing means physical sequential processing, typically driven by unqualified
GN calls on the root segments. However, with care, it can also be the result of qualified GN or
GU root calls. The essential aspect of the processing is that many or all CIs in the base
section of each unit of work are accessed.

When using HSSP, IMS allocates private buffers to the application and uses both chained
reads and look-ahead buffering. The update writes are done by standard OTHREADs and
hence are also asynchronous and use chained write I/Os.

A standard option with HSSP is to take an asynchronous image copy while the HSSP
application is running.

HSSP provides superb sequential performance by exploiting significant amounts of page
fixed storage for the private buffers.

5.15.10 I/O error toleration support for DEDB
When one or a few CIs suffer I/O errors, the data in the CI in error remains available to all
applications in the system which experienced the write error. Any attempt to access the CI
from another data sharing IMS results in an “AO” status code. The area can be recovered
without any requirement for a data outage.

5.15.11 DEDB using the Virtual Storage Option
Virtual Storage Option (VSO) is a high-performance option for DEDBs and the preferred
alternative to MSDBs for holding data in memory. By means of VSO, IMS provides the user
with the best features of DEDBs and the response time and parallelism of MSDBs.

The definition, access, and operations on a DEDB using VSO function are exactly the same
as they are for an ordinary DEDB, but the data is kept in virtual storage using a z/OS data
space. Thus, programs do not wait for I/Os when segments are accessed.

92 IMS Performance and Tuning Guide

Local VSO DEDB performance tips
Here we provide performance tips related to segment level locking, lock contention, I/O
reduction, VSO output threads, and IMS system checkpoint.

Segment level locking
Locking at segment level is implemented for any VSO DEDB whose characteristics exactly
match those of an MSDB, that is:

� Root-only hierarchy
� Fixed length segment
� PCB PROCOPT=G or R
� VSO option in DBRC
� No compression

If implementing the VSO option for an existing DEDB, then we recommend that you consider
modifying the DEDB, whenever possible, so that it matches the segment level locking
requirements. However, it might not be possible to take an existing DEDB and modify it so
that it meets the requirements of segment level locking.

Lock contention
One of the benefits obtained from a VSO DEBD when compared to a non-VSO DEDB is that
a CI lock held for updating can be released earlier because of the differences in the output
thread processing:

� With a non-VSO DEDB, a CI lock has to be held until the CI is written out to DASD.
Because Fast Path writes out the CIs asynchronously for performance reasons, this
means that the CI lock can be held for a relatively long time.

� With VSO areas, the lock is released as soon as the updated CI has been copied to the
data space, which occurs early in sync point phase 2. This considerably reduces lock
contention.

Table 5-3 summarizes the lock level in effect for every case.

Table 5-3 Locking level for GU and GN DL/I calls on VSO DEDB

PROCOPT

Segment
level

locking VIEW=MSDB Lock level

A N N EXCLUSIVE

A N Y READ

A Y N EXCLUSIVE

A Y Y EXCLUSIVE

G N N READ

G N Y READ

G Y N READ

G Y Y READ

GR N N EXCLUSIVE

GR N Y READ

GR Y N EXCLUSIVE

GR Y Y READ

Chapter 5. Database performance 93

If you migrate an MSDB to VSO DEDB, we recommend that you include VIEW=MSDB in the
corresponding PCBs, in order to avoid possible deadlock situations and performance impact.

If you implement the VSO option for an existing non-VSO DEDB, keep in mind that if you code
VIEW=MSDB in the PCB the READ locks are released soon after the GU calls complete. This
behavior is quite different from the non-VSO DEDB method, and your application programs
might not be prepared for this event or they might experience an integrity exposure.

With VIEW=MSDB PCBs holding locks on VSO DEDBs as MSDBs do, and locking at the
segment level, there is not a significant difference between VSO DEDB locking rules and the
ones used with MSDBs. This means that, from a lock contention and parallelism point of view,
VSO DEDBs are comparable to MSDBs and considerably better than non-VSO DEDBs.

The FLD call works for a VSO in just the same way as for an MSDB. That is to say, FLD calls
are processed at sync point and are sorted by resource.

I/O reduction
Some IMS systems have DEDB areas that experience very high I/O rates. Implementing such
areas with VSO provides major benefits, because the read I/Os are eliminated and the write
I/Os are optimized; updates to a CI from multiple transactions are applied with a single I/O.
We strongly recommend that you implement VSO for small and highly volatile DEDBs. If your
system has small and highly volatile databases implemented as MSDBs, we recommend that
you migrate them to VSO DEDBs as well.

VSO output threads
Periodically, all updated CIs are written out from the data spaces to the area data sets during
a process that is also called Output Thread.

This OTHREAD process for VSO DEDB is more efficient than the non-VSO DEDB process.
Locks on CIs are released earlier during sync point processing, and the I/Os are performed in
chains of 200 KB. Also, multiple updates to the same CI are only written back to DASD once.
See Table 5-4 for a comparison of OTHREAD processing.

At IMS system checkpoint, the OTHREAD process is started too, but it is also asynchronous,
and so it does not impact IMS system checkpoint duration. If you migrate your MSDB to VSO
DEDB and specify your system to no longer use MSDBs (MSDB parameter left to null in
DFSPBxx member of IMS.PROCLIB), then your IMS system checkpoint elapsed time should
be reduced.

Table 5-4 OTHREAD processing for VSO and non-VSO DEDBs

VSO PRELOAD options
Any DEDB can be moved to virtual storage by specifying the VSO keyword on the DBRC
commands INIT.DBDS or CHANGE.DBDS.

Non-VSO DEDB VSO DEDB

Updated CI in FP buffer Updated CI in FP buffer

SYNC SYNC

CI Write to Data Space

Lock Release

Asynchronous Physical Logging → OTHREAD Asynchronous Physical Logging

Database Data set Write I/Os Asynchronous OTHREAD (Wait for Logging)

Lock Release Database Data set Write I/Os

94 IMS Performance and Tuning Guide

VSO areas are mapped linearly to z/OS data spaces. During IMS startup, two 2 GB data
spaces are acquired:

� One has the disabled reference (DREF data space) option specified. That means that its
pages can reside in memory but are never paged out to DASD.

� The other data space does not have the DREF option (non-DREF data space) and might
experience paging.

An area can be defined to DBRC with either the PRELOAD or the NOPREL attributes:

� Any area defined with the PRELOAD option is read into the DREF data space following
the IMS initialization system checkpoint. Only the direct part of the area is loaded.

� If an area has the NOPREL option, then each direct part CI is allocated a position in the
non-DREF but no automatic load takes place. Instead, the first time a CI is requested after
the area open, IMS reads it from DASD and copies it to the data space.

SDEP CIs are never loaded into the data space.

CIs from PRELOAD areas always remain in central storage. For medium or small areas with a
high access rate where most of the CIs in the area are accessed with similar frequency (there
are zero or negligible hot spots), we recommend that you implement the PRELOAD option.

When choosing the PRELOAD option, keep in mind that PREOPEN is implicitly assumed for
this option. This means that VSAM area data sets are allocated and opened immediately
when IMS starts or a /START AREA command is issued.

CIs from NONPRELOAD areas can be paged out to page data sets if there is a storage
constraint. If you have big VSO areas where only a small part of the area is actually
accessed, we recommend that you implement the NOPREL option so that only space for
needed CIs is allocated.

VSO DEDB performance will more likely degrade with paging than non-VSO DEDBs doing
I/Os to the actual data sets. We recommend that you make conscious use of the VSO option
for DEDBs, that is, for those databases where the area is not too big and which need high
performance.

IMS system checkpoint
When VSO DEDBs databases are used, the content of the data space is written to DASD at
IMS system checkpoint time only for those VSO DEDBs that have had update processing. To
do so, an output thread is started at every system checkpoint. But this output thread is an
asynchronous process, and its elapsed time does not impact the IMS system checkpoint
duration.

A considerable reduction in the IMS system checkpoint elapsed time (tens of seconds,
depending on how large the MSDBs are) can be achieved by migrating MSDBs to VSO
DEDBs and specifying the MSDB parameter in the DFSPBxx member of IMS.PROCLIB as
null.

During IMS system checkpoint, transaction processing almost stops, which has several
negative consequences. If this is the case for your system, we recommend that you migrate
from MSDBs to VSO DEDBs.

Chapter 5. Database performance 95

Monitoring VSO performance
The VSO Activity Summary: SHARELVL 2/3 section of IMS Performance Analyzer VSO
Statistics report provides information that can be used to monitor the performance of the VSO
areas. Refer to Example 5-5 for a sample of this report. You can determine how well VSO is
performing by comparing the number of requests that are performed against the data space
to the number of requests that need DASD access.

Example 5-5 IMS Performance Analyzer VSO Statistics report (VSO Activity Summary: SHARELVL 2/3)

 IMS Performance Analyzer
 VSO Activity Summary: SHARELVL 2/3 - IM1B

 From 25Sep2006 13.15.48.33 To 25Sep2006 13.32.33.58 Elapsed= 0 Hrs 16 Mins 45.251.273 Secs

 Database Area --- IMS from/to CF --- -------VSO CF from/to DASD------ ----------- Lookaside-Pool Buffer ------------
 Name Name Gets Puts Gets Puts Castouts Searches Hits Pct Hit Valid Pct
 DISTDB AREADI01 4919 24712 0 395 3 48696 8053 16.5 8053 16.5
 ITEMDB AREAIT01 30145 1002 501 0 3 236444 32802 13.9 32573 13.8
 WAREDB AREAWH01 0 12100 0 40 3 45769 12418 27.1 12418 27.1

 System Totals 35064 37814 501 435 9 330909 53273 16.1 53044 16.0

You can also monitor the areas that are actually loaded into data spaces and the amount of
storage they use. The AREASIZE column shows the number of 4 K pages reserved for a
certain area in the data space. This amount is the maximum space needed to allocate the
whole area (all its CIs) and depends on the DBD. If the area is not PRELOADed, the actual
amount of storage allocated for the area can be sensibly less.

Example 5-6 shows a /DIS FPVIRTUAL command.

Example 5-6 /DIS FPVIRTUAL command

IM1BDIS FPVIRTUAL
DFS4444I DISPLAY FROM ID=IM1B
 DATASPACE MAXSIZE(4K) AREANAME AREASIZE(4K) OPTION
 001 524238 DREF
 NO AREAS LOADED INTO DREF DATASPACE 001.
+ AREANAME STRUCTURE ENTRIES CHANGED AREA CIÄ POOLNAME OPTIO
 NS
+ AREAWH01 IM0B_AREAWH01A 0000075 0000020 00000075 WAREPOOL PREO,
 PREL
+ AREAWH01 IM0B_AREAWH01B 0000075 0000020 00000075 WAREPOOL PREO,
 PREL
+ AREAIT01 IM0B_AREAIT01A 0002448 0000000 00002520 ITEMPOOL PREO,
 PREL
+ AREAIT01 IM0B_AREAIT01B 0002448 0000000 00002520 ITEMPOOL PREO,
 PREL
+ AREADI01 IM0B_AREADI01A 0000440 0000185 00000440 DISTPOOL PREO,
 PREL
+ AREADI01 IM0B_AREADI01B 0000440 0000185 00000440 DISTPOOL PREO,
 PREL
 2006271/171202

5.15.12 Shared Virtual Storage Option
Block-level data sharing of VSO DEDB areas allows multiple IMS subsystems to concurrently
read and update VSO DEDB data. VSO DEDBs supporting block-level data sharing are
commonly called Shared VSO (SVSO) DEDBs.

The main elements that participate in the SVSO implementation are:

96 IMS Performance and Tuning Guide

� Cache structures in the Coupling Facility

Store-in cache structures are used to contain copies of the control intervals accessible to
all the IMSs in the data sharing group.

� Local cache buffers

Each IMS has a set of buffers that contains a local copy of the control intervals.

� Permanent storage

DEDB area data sets are needed to contain a non-volatile copy of the data in DASD.

5.15.13 Local buffer pool definitions
The private local buffer pools can be defined by means of the DEDB statement of member
DFSVSMxx on IMS.PROCLIB. Multiple DEDB statements can be used in order to define
various buffer pools, each one with different attributes. The attributes that can be specified in
the DEDB statement include:

� The name of the buffer pool
� The number of buffers for the primary and secondary allocations
� The maximum number of buffers that can be allocated
� The buffer pool buffer size
� Whether to assign the buffer pool to a certain area
� The LKASID option

An area can use a certain buffer pool if the CI size for the area matches the buffer pool buffer
size, it has the same LKASID option specified in the RECON, and the buffer pool is not
implicitly assigned to another area.

Two or more areas with the same characteristics can also share a buffer pool.

When starting an area, if no buffer pool is defined or there is not an available buffer pool that
matches the CI size for the area, IMS creates a default buffer pool for it. Default buffer pools
can also be shared among different areas.

We recommend that you keep the following suggestions in mind when defining local buffer
pools:

� Do not allow the default buffer pools to be created. Include at least one DEDB statement
for each different CI size in the DFSVSMxx member of IMS.PROCLIB.

� Specify a number of buffers large enough to hold the ones needed for the maximum
number of concurrent requests. Specify them as primary allocation buffers, so that they
are page fixed. Then, specify a secondary allocation to cover unexpected high load
situations, and a maximum number of buffers large enough so that it is never reached (if a
buffer is not available, IMS waits for a buffer to become free, which is undesirable). Paging
of primary or secondary buffers does not occur. When secondary buffers are allocated,
they are page fixed.

If your applications use PCB with PROCOPT=GO to access SVSO areas, Fast Path might
steal local buffers. That means that extra buffers need to be defined for the local buffer
pool.

Also, if the buffer pool is not large enough, the LKASID option can be ineffective. So, it is
important for the primary allocation to be large enough.

Chapter 5. Database performance 97

A buffer containing committed changes that has not been written to the Coupling Facility
(CF) cannot be reused until an OUTPUT THREAD writes the buffer to the CF and
completes. Therefore, a lack of OTHREADs can result in more buffers being needed for
the local buffer pools. We recommend that you set the OTHR parameter to the maximum
value (255) if there is any doubt about how to fine-tune their number, because they are
cheap to define.

� If the application’s access rate pattern for different SVSO areas is similar, you could allow
two or more areas to share the same buffer pool as long as they have the same CI size
and LKASID options. It is better from an administration point of view. However, if the two
areas both have very high access rates, then you should give the high-access-rate areas
dedicated buffer pools and only allow the low-access-rate areas to share pools.

If one of the areas sharing a pool is accessed much more than the others, then it
consumes most of the buffers, and the performance of the accesses to the other areas
can be degraded. If the access profiles are not similar for the different areas in your
system, we recommend that you assign dedicated buffer pools for each area.

� Normally, we always recommend the LKASID option unless the area is highly updated
from different IMSs in the data sharing group.

� For those areas where the read/write ratio is very high, we recommend that you assign
them a dedicated buffer pool and enable the LKASID option, so that the major part of the
reads are resolved within the local IMS (without accessing the CF).

� We also recommend that you monitor the usage of these buffer pools and adjust the
allocation values and the LKASID option appropriately.

LKASID option
IMS maintains the buffers in the local buffer pool chained off three or four queues:

� Available queue

These are the buffers available for use. It does not matter what they contain, because they
are considered as empty buffers.

� Requestor queue

These are the buffers in use by an application program. These buffers count toward the
NBA/OBA limit.

� Output Thread queue

These are the buffers with committed updates that are waiting for an OTHREAD to be
written to the CF.

� LKASID queue (optional)

This queue only applies for pools with the LKASID option. This is discussed in this section.

When the LKASID option is the choice, the local buffers used by the application are not
returned to the available queue after application sync point. Instead, they are chained off the
lookaside queue.

We recommend that you select the LKASID option. It provides better performance, because
CF accesses are saved, especially if the read/write ratio is high and most of the requests for
CI are resolved locally without accessing the CF.

In order to take advantage of the LKASID option, the buffer pool has to be large enough
(primary plus secondary) to hold all of the current requests for buffers from executing
transactions (requestor queue), for scheduled but incomplete output threads (output thread
queue), and with enough additional buffers to provide a sufficient number of buffers that
remain on the lookaside queue.

98 IMS Performance and Tuning Guide

How efficiently the LKASID option performs depends on the ratio
valid_hits/number_of_searches. If this ratio is not a big number, it is not worth paying the cost
of searching the lookaside queue, and you might consider choosing NOLKASID.

This ratio can be obtained by means of either IMS Performance Analyzer VSO Statistics
report, the /DIS POOL FPDB command, or the DBFULTA0 utility.

There are three reasons for the LKASID option to be inefficient:

� A shortage in the buffer pool
� The application database access profile
� INOPREL area and CF structure size shortage

Be aware that the Valid ratio shown in the output for the /DIS POOL FPDB command has a
slightly different meaning than the Hits Valid ratio shown in the IMS Performance Analyzer
VSO Statistics report. For the command, Valid means the percentage of times a buffer found
in the pool had valid data. Therefore, you must use the displayed for Hits and Valid together to
obtain the ratio of efficiency for the LKASID option. For example, if Hits is 40%, and Valid is
75%, a buffer was found in the pool 40% of the time, and of that 40%, 75% of the buffers
found had valid data, that is, 30% of the requests found buffers on the LKASID queue with
valid data. So, IMS had to read data from CF approximately 70% of the time. The Hits Valid
ratio shown in IMS Performance Analyzer VSO Statistics report is 30%.

DBFULTA0 gives the number of cross-invalidated hit buffers instead, that is, the percentage of
invalid buffers from those that were found in the lookaside queue.

Monitoring the local buffer pools is necessary to set the local buffer pool allocations and the
LKASID option appropriately.

Coupling Facility structure definitions
Each VSO DEDB cache structure in the shared storage of a Coupling Facility represents one
or more VSO DEDB areas. A VSO DEDB cache structure can be a single-area structure or a
multi-area structure. A single-area structure can contain data from only one DEDB area. A
multi-area cache structure can hold data from multiple areas. Both single-area and multi-area
cache structures conform to the characteristics of the areas for which they are created. Both
types of cache structures are also non-persistent: they are deleted after you close the last
area connected to them.

To determine the structure size, you can use the z/OS Coupling Facility structure sizer tool
(CFSizer). CFSizer is a Web-based application that calculates the structure size based on the
input data that you provide. To use the CFSizer tool, go to:

http://www.ibm.com/servers/eserver/zseries/cfsizer/

5.15.14 PRELOAD | NOPREL option

The PRELOAD option causes the whole area to be read from DASD and written to the CF as
soon as IMS restarts or an /STA AREA command is issued. When this is the choice, the CF
structure size has to be large enough to contain all the CIs of the direct portion of the area;
otherwise, the area cannot be started.

Chapter 5. Database performance 99

http://www.ibm.com/servers/eserver/zseries/cfsizer/

As a general rule, we recommend that you use NOPREL and specify a CF structure size
large enough to contain the CIs of the area that are actually active. If there are hot spots in
the database, as soon as the applications start accessing those CIs, they are placed in the
CF and remain there for the rest of the IMS session (or until the area is closed or a /VUNLOAD
command is issued). No unnecessary space is wasted in the CF with NOPREL and an
appropriate CF structure size. The first reference to each CI might have a worse response
time because DASD accesses are also needed (CF structures are just a cache).

PRELOAD is only recommended if almost all the CIs in the area contain data, they are all
referenced with similar frequency, and it is required to have very good performance right from
the start.

Also, you might consider using PRELOAD for those areas with medium load but where
extremely high performance is a requirement and all the CIs are randomly accessed. In this
case, PRELOAD maintains all the CIs in the CF.

5.15.15 Block level locking and root-only DEDBs
Local VSO DEDB areas use segment level locking, which makes them equivalent to MSDBs.
This means that two segments could be accessed simultaneously from different dependent
regions without incurring lock contention even if they were in the same CI and the access
intent was exclusive.

With SVSO areas, the locking unit is the CI. If, after moving from local VSO to SVSO, you
experience an increase in lock contention, we recommend that you try to reduce contention
problems at a maximum by means of:

� Reducing the CI size

Different CI sizes can be specified for each area and local buffer pool. We recommend
that you try to adjust the CI size to the segment size wherever it is possible, so that only
one segment fits in a CI.

� Expanding the area

You can also increase the size of the area in order to have more available RAP CIs. This
causes segments to be more sparsely distributed in the database and reduces the
chances of having two or more segments in the same CI. If you do so, you should also be
aware that, if PRELOAD option is the choice, the CF structure size needs to be
appropriately increased. Keep in mind that increasing the area size can result in lots of
empty CIs; you might consider if PRELOAD is the best option in this case.

We also recommend that you adjust the PROCOPT values of the database PCBs to the
actual type of access that the programs perform. If you overly specify the PROCOPTs, you
can experience lock contention problems. The only time locking is different between VSO and
SVSO is if VSO is eligible for segment level locking. If you have lock contention with VSO,
you will have the same contention with SVSO. The difference is that with SVSO, you use the
IRLM to resolve the contention. If there is contention, then using the IRLM to resolve it is not
appreciably less efficient than using PI to resolve it if data sharing is not used at all.

If you implement the VSO option for an already existing SHARELEVEL(3) DEDB, no
particular increase in lock contention is expected to occur.

5.15.16 Sequential dependent sharing (shared SDEPs)
The sequential dependent (SDEP) segment function provides the user with a time-sequenced
insert capability for a portion of a DEDB area that has SDEP defined.

100 IMS Performance and Tuning Guide

SDEP segments are physically stored in chronological sequence in SDEP CIs into the last
part of the DEDB area data set. Therefore, they are a unique segment type to the DEDB.
They are also chained off the root as a second dependent segment.

SDEP segments cannot be replaced or deleted by applications, only inserted (and also
retrieved but with poor performance), so utilities are provided to sequentially read, process,
and delete SDEP segments in an area (SCAN and DELETE utilities). This kind of segment is
designed for quick insert and is ideally suited for journal type applications.

SDEP buffers are kept in main storage and written out to DASD by an output thread once the
buffers are filled to capacity.

5.15.17 IMS Fast Path buffers
The following IMS control region and dependent region EXEC parameters related to Fast
Path buffers are important for performance tuning:

� Control region EXEC parameters (DFSPBxx member of IMS.PROCLIB)

– DBBF: the total number of buffers
– DBFX: the system buffer allocation

� Dependent region EXEC parameters

– NBA: normal buffer allocation
– OBA: overflow buffer allocation

We recommend that you use the following formula in order to calculate the number of Fast
Path database buffers required:

DBBF = Number of open areas that have SDEP segments
+ Sum of NBA for all concurrently active FP programs
+ Largest OBA allocation for any of the concurrently active FP programs,

including any specified by CICS for DBCTL
+ DBFX
+ Sum of all Fast Path buffers used by CICS(CNBA)

If the number of database buffers requested by DBBF is not large enough, then an area open
or a region initialization fails.

5.15.18 Normal buffer allocation
When a dependent region is started with NBA specified in its execution parameters, it causes
the NBA number of buffers to be made available for the region in the Fast Path buffer pool.
This number of buffers needs to be sufficient to handle the processing of the vast majority of
programs running in that region. These buffers are page fixed when the region starts.

All CIs locked at the exclusive level remain locked until the buffer is released. Buffers that
have not been updated are released when either:

� The NBA limit is reached (and buffer stealing occurs).
� The program reaches sync point.

Updated buffers are released only when the OTHREADs have completed.

Example 5-7 IMS Performance Analyzer Fast Path Resource Usage and Contention Report

 IMS Performance Analyzer

 Fast Path Resource Usage and Contention - IM1B

Chapter 5. Database performance 101

 From 25Sep2006 13.20.02.24 To 26Sep2006 17.04.58.94 Elapsed= 27 Hrs 44 Mins 56.699.936 Secs

 ---DEDB Calls-- --- ADS I/O --- --VSO Activity- -Common Buffer- Contentions LGNR Stat Totl Tran
Transact Routing Reads Updates Reads Updates Reads Updates Usage Tot Tot CI/ Total #CI Sync Rate
 Code Code Count Avg Max Avg Max Avg Max Avg Max Avg Max Avg Max Avg Max Wts Stl UOW OBA Sec Comb Logd Fail /Sec
TPCCB1 BMP1DEB1 1 97 97 97 97 10 10 10 10 0 0 0 0 10 10 0 0 0 0 0 0 0 0 0
TPCCB2 BMP1DEB2 1 120 120 120 120 10 10 10 10 0 0 0 0 10 10 0 0 0 0 0 0 0 0 0
TPCCB4 BMP1DEB4 1 102 102 102 102 10 10 10 10 0 0 0 0 10 10 0 0 0 0 0 0 0 0 0
TPCCB6 BMP1DEB6 1 99 99 99 99 10 10 10 10 0 0 0 0 10 10 0 0 0 0 0 0 0 0 0
TPCCB9 BMP1DEB9 1 110 110 110 110 10 10 10 10 0 0 0 0 10 10 0 0 0 0 0 0 0 0 0
TPCCN *SF=L 62 22 31 20 29 14 20 0 0 5 11 0 0 26 36 0 0 0 0 0 0 0 62 0
 TPCCN 6373 22 32 21 31 14 22 11 20 5 14 1 1 25 39 0 0 0 0 1 0 0 0 0
TPCCN *Total* 6435 22 32 21 31 14 22 11 20 5 14 1 1 25 39 0 0 0 0 1 0 0 62 0
TPCCO *MPP 777 7 15 0 0 1 4 0 0 0 0 0 0 1 4 0 0 0 0 0 0 0 0 0
TPCCP TPCCP 6050 2 2 3 3 1 2 1 1 0 1 2 2 4 4 0 0 0 0 0 0 0 0 0
TPCCS *MPP 569 410 485 0 0 290 369 0 0 0 1 0 0 10 10 0 999 0 0 1 0 0 0 0

System Totals 13836 28 485 11 120 19 369 6 20 3 14 1 2 14 39 0 999 0 0 2 0 0 62 0

The IMS Performance Analyzer Fast Path Resource Usage and Contention report shows the
number of buffers actually used by each Fast Path transaction (see Example 5-7 on
page 101).

We recommend that you try to aim for at least 99% of transactions acquiring all their buffer
needs from NBA.

You can also use the IMS Performance Analyzer Fast Path Transaction Exception Log report.
This report produces similar information to that obtained with the DBFULTA0 utility, but with
enhanced data filtering, time precision, and additional fields, such as USERID. Refer to
Example 5-8.

Example 5-8 IMS Performance Analyzer Fast Path Transaction Exception Log report

 IMS Performance Analyzer

 Fast Path Transaction Exception Log

 Log 08Sep2006 16.59.23.79

 Sync Point S Transact Routing P User PST Queue --Transit Times (Msec)-- Output -DB Call- --ADS-- --VSO-- Buf --DB Wait--
 Time F Code Code T ID ID Count In-Q Proc Out-Q Total (sec) DEDB MSDB Get Put Get Put Use CI UW OB CB
16:57:58.48 TPCCN TPCCN WH001002 11 6 137 17 0 154 0.00 35 0 13 0 0 1 23 0 0 0 0
16:57:58.50 TPCCN TPCCN WH000406 11 5 59 19 0 78 0.00 35 0 13 0 0 1 23 0 0 0 0
16:57:58.52 TPCCN TPCCN WH000602 11 7 79 21 0 100 0.00 55 0 19 0 0 1 34 0 0 0 0
16:57:58.54 TPCCN TPCCN WH001904 11 6 71 15 0 86 0.00 27 0 9 0 0 1 16 0 0 0 0
16:57:58.54 TPCCP TPCCP WH000702 6 0 0 5 0 5 0.00 5 0 1 0 0 2 4 0 0 0 0
16:57:58.55 TPCCN TPCCN WH001706 11 5 87 16 0 103 0.00 39 0 10 0 0 1 21 0 0 0 0
16:57:58.59 TPCCN TPCCN WH000304 11 6 104 33 0 137 0.00 39 0 13 0 0 1 24 0 0 0 0
16:57:58.61 TPCCN TPCCN WH001308 11 5 112 16 0 128 0.00 27 0 10 0 0 1 18 0 0 0 0
16:57:58.61 TPCCP TPCCP WH000608 6 1 0 4 0 4 0.00 5 0 1 0 0 2 4 0 0 0 0
16:57:58.62 TPCCP TPCCP WH000610 6 0 5 5 0 10 0.00 5 0 1 0 0 2 4 0 0 0 0
16:57:58.63 TPCCN TPCCN WH000308 11 4 97 19 0 116 0.00 55 0 17 0 0 1 32 0 0 0 0
16:57:58.67 TPCCN TPCCN WH000506 11 4 118 36 0 154 0.00 59 0 17 0 0 1 33 0 0 0 0
16:57:58.67 TPCCP TPCCP WH000504 6 1 0 31 0 31 0.00 5 0 1 0 0 2 4 1 0 0 0
16:57:58.68 TPCCP TPCCP WH000902 6 0 22 6 0 28 0.00 5 0 1 0 0 2 4 0 0 0 0
16:57:58.68 TPCCN TPCCN WH000706 11 4 155 17 0 172 0.00 43 0 13 0 0 1 25 0 0 0 0
16:57:58.70 TPCCN TPCCN WH001208 11 4 115 17 0 132 0.00 39 0 12 0 0 1 23 0 0 0 0
16:57:58.72 TPCCP TPCCP WH000804 6 0 0 5 0 5 0.00 5 0 1 0 0 2 4 0 0 0 0
16:57:58.73 TPCCN TPCCN WH001204 11 4 116 20 0 136 0.00 59 0 17 0 0 1 33 0 0 0 0
16:57:58.73 TPCCP TPCCP WH001510 6 1 0 5 0 5 0.00 5 0 1 0 0 2 4 0 0 0 0
16:57:58.73 TPCCP TPCCP WH001604 6 0 6 3 0 9 0.00 5 0 1 0 0 2 4 0 0 0 0
16:57:58.75 TPCCN TPCCN WH001210 11 3 98 21 0 119 0.00 51 0 16 0 0 1 30 0 0 0 0
16:57:58.77 TPCCN TPCCN WH000208 11 3 82 15 0 97 0.00 23 0 10 0 0 1 17 0 0 0 0
16:57:58.78 TPCCP TPCCP WH001304 6 0 0 5 0 5 0.00 5 0 1 0 0 2 4 0 0 0 0
16:57:58.79 TPCCN TPCCN WH000210 11 3 69 19 0 88 0.00 47 0 14 0 0 1 27 0 0 0 0
16:57:58.79 TPCCP TPCCP WH001404 6 0 0 5 0 5 0.00 5 0 1 0 0 2 4 0 0 0 0
16:57:58.80 TPCCP TPCCP WH001602 6 0 0 4 0 4 0.00 5 0 1 0 0 2 4 0 0 0 0
16:57:58.81 TPCCN TPCCN WH000408 11 2 84 19 0 103 0.00 47 0 14 0 0 1 27 0 0 0 0
16:57:58.82 TPCCP TPCCP WH001004 6 0 0 4 0 4 0.00 5 0 1 0 0 2 4 0 0 0 0
16:57:58.83 TPCCN TPCCN WH002002 11 1 44 15 0 59 0.00 27 0 10 0 0 1 18 0 0 0 0
16:57:58.86 TPCCN TPCCN WH001704 11 1 51 25 0 76 0.00 59 0 19 0 0 1 35 0 0 0 0
16:57:58.86 TPCCP TPCCP WH001708 6 2 0 34 0 34 0.00 5 0 1 0 0 2 4 1 0 0 0
16:57:58.87 TPCCP TPCCP WH000206 6 1 25 4 0 29 0.00 5 0 1 0 0 2 4 0 0 0 0
16:57:58.87 TPCCP TPCCP WH000508 6 0 20 5 0 25 0.00 5 0 1 0 0 2 4 0 0 0 0
16:57:58.87 TPCCN TPCCN WH000802 11 0 21 17 0 38 0.00 23 0 10 0 0 1 17 0 0 0 0

102 IMS Performance and Tuning Guide

16:57:58.88 TPCCP TPCCP WH000106 6 0 0 3 0 3 0.00 5 0 1 0 0 2 4 0 0 0 0
16:57:58.90 TPCCP TPCCP WH000110 6 0 0 3 0 3 0.00 5 0 1 0 0 2 4 0 0 0 0
16:57:58.92 TPCCN TPCCN WH001504 11 3 0 44 0 44 0.00 51 0 17 0 0 1 31 0 0 0 0
16:57:58.93 TPCCP TPCCP WH001010 6 0 0 4 0 4 0.00 5 0 1 0 0 2 4 0 0 0 0
16:57:58.94 TPCCP TPCCP WH000806 6 0 1 6 0 7 0.00 5 0 1 0 0 2 4 0 0 0 0
16:57:58.96 TPCCN TPCCN WH000102 11 3 24 31 0 55 0.00 63 0 18 0 0 1 35 0 0 0 0
16:57:58.97 TPCCP TPCCP WH001102 6 0 0 4 0 4 0.00 5 0 1 0 0 2 4 0 0 0 0

 IMS Performance Analyzer

 Fast Path Transaction Exception Summary

 Log 08Sep2006 16.59.23.79

 --Average Transit Time-- --Maximum Transit Time-- ----- DB Calls ----- -------- DB Waits --------
Transact Routing Resp Input Pgm Outpt Input Pgm Outpt DEDB MSDB CI UOW OBA CB
 Code Code Count Queue Exec Queue Total Queue Exec Queue Total Avg Max Avg Max Av Mx Av Mx Av Mx Av Mx
TPCCN TPCCN 3787 402 26 0 428 1898 449 3 1920 43 63 0 0 2 38 0 0 0 0 0 0
TPCCP TPCCP 3904 3 8 0 11 183 222 1 222 5 5 0 0 0 10 0 0 0 0 0 0

System Totals 7691 200 17 0 216 1898 449 3 1920 24 63 0 0 1 38 0 0 0 0 0 0

 IMS Performance Analyzer

 Fast Path Transaction Exception Recap

 Log 08Sep2006 16.59.23.79

 Total number of Fast Path transactions examined (Total Traffic) 7691
 Number of Fast Path exception transactions (Exception Traffic) 7691

 Expectation Set used in the analysis . . . N/A in Library N/A

 Breakdown of exceptions by type:
 IFP transactions where the expectation was not met . . . 7691
 IFP transaction Sync failures 0
 IFP transactions where no dequeue record was found . . . 0
 Non-IFP transactions (including Sync failures) 0

 Total Traffic Data Set N/A
 Exception Traffic Data Set . . . N/A

The number reported under the Buf use column on the first line for every transaction is the
total number of buffers used, irrespective of whether they were NBA only or NBA + OBA. The
Buffers line in the report gives the detailed breakdown of the number used within NBA and
OBA.

The report can provide a breakdown of buffer usage by type. It details the number of NBA,
OBA, NRDB (Non-related Buffers for SDEP and MSDB use), number of times buffer stealing
was invoked, number of times the program waited for a buffer to become available, number of
buffers written with OTHREADs, as well as the number of buffer sets used by HSSP and the
high-speed reorganization utility.

5.15.19 Overflow Buffer Allocation (OBA)
If your program requires more than its NBA, IMS can provide additional buffers. The number
allowed is specified by the OBA parameter on the region procedure. However, IMS permits
only a single program to access its OBA buffers at any point in time and uses the OBA latch
to enforce this (generally, OBA is required only by update programs).

The OBA latch is released when the holding program reaches sync point. If the latch is
unavailable because another program is using its OBA buffers, the region waits until the latch
becomes available. At any time, only the largest OBA requested by a region is page fixed in
the Fast Path buffer pool. We recommend that you allocate sufficient NBA for the majority of
work units, so that OBA is rarely used.

Chapter 5. Database performance 103

You can monitor the OBA latch contention by means of the Latch Statistics section of IMS
Performance Analyzer Internal Resource Usage report. We recommend that you investigate
any value different from 0 total IWAITs in the OBA latch line.

5.16 Non-recoverable databases

A database can be registered with DBRC as non-recoverable. This does not log any
after-images of any database changes that take place. The before-images are still logged,
because they are required for dynamic backout. These before-images are kept only on the
OLDS and are not archived to a SLDS.

A database can be registered with DBRC as non-recoverable by using the NONRECOV
option on the INIT.DB or CHANGE.DB commands.

If a database is marked as non-recoverable, then image copies are not required after initial
load (PROCOPT=L) or reorganizations of the database.

Typical uses of a non-recoverable database are with indexes, either primary or secondary,
where you have an index rebuilding tool and also, databases that the application has decided
if anything goes wrong with them, a DASD failure, for example, they are to be made empty.
Non-recoverable databases are not backed up.

5.17 OSAM as opposed to VSAM

Some IMS full function database data sets can be either OSAM or VSAM ESDSs. These are
HDAM data sets, PHDAM database data sets, HIDAM database data sets, and PHIDAM
database data sets. You cannot use OSAM for HIDAM indexes, PHIDAM indexes, secondary
indexes, or HALDB ILDSs. These data sets must be VSAM KSDSs.

OSAM is the preferred access method whenever it can be used. OSAM has several
advantages.

OSAM has a superior way of writing multiple blocks. When an application sync point occurs,
IMS sorts the altered OSAM blocks by physical location within volumes. IMS writes blocks
which are on the same volume with chained writes. This reduces the processor time required
on the z/OS system. IMS does the chained writes for different volumes in parallel. This
reduces the elapsed time for the writes.

OSAM has a shorter processor instruction path length for most of its processing. This is
especially significant in online systems. This means that OSAM typically requires less
processor time than VSAM.

OSAM has OSAM sequential buffering. VSAM does not have a similar capability. When
OSAM sequential buffering is invoked, IMS does anticipatory reads. For sequential
processes, OSAM sequential buffering reads blocks into buffers before the application
requires them. This eliminates the wait time for reads and can significantly reduce the
elapsed time for sequential processing.

For HDAM and HIDAM, OSAM data sets can be up to 8 gigabytes in size. HDAM and HIDAM
ESDSs are limited to 4 gigabytes.

You can reuse OSAM data sets. When you reorganize a database, you do not have to delete
and redefine OSAM data sets. When you reorganize HDAM and HIDAM databases, you must

104 IMS Performance and Tuning Guide

delete and redefine VSAM data sets. This VSAM requirement does not apply to PHDAM and
PHIDAM databases.

There is a warning about the reuse of OSAM data sets. You should not reuse multivolume
OSAM data sets. If you do not scratch and reallocate a multivolume OSAM data set before
reusing it, an invalid end-of-file mark might be left on the last volume of the data set. This can
lead to lost data. You can use HALDB to avoid database data sets that are so large that they
must span multiple volumes.

5.17.1 Performance results on OSAM and VSAM

Tests were run in a controlled environment in the Silicon Valley Laboratory using 10 HIDAM
databases. The first set of tests were run with the databases defined with VSAM, and then a
second set of tests were run with OSAM using the same workload that was used in the first
test.

Set one of the BMPs tested consisted of three BMPs each executing 2 000 000 total
database calls. There were 10 qualified GHU calls performed along with 1 000 000 qualified
GHN calls and 1 000 000 replace calls. Table 5-5 shows the results of BMP set one.

Table 5-5 BMP set one

Set two of the BMPs tested consisted of four BMPs each executing 4 500 000 total database
calls. There was one qualified GHU call performed along with 1 000 qualified GHN calls,
1 000 replace calls, and 4 000 000 GN calls. Table 5-6 shows the results of BMP set two.

Table 5-6 BMP set two

5.17.2 Recommendation summary for OSAM as opposed to VSAM

Use OSAM data sets, not VSAM ESDSs, with PHDAM, PHIDAM, HDAM, and HIDAM
databases.

Type RMF CPU%

Average total
task CPU time in

seconds
Total elapsed

time in minutes
Delta on total
elapsed time

VSAM 50.33 168 8.71

OSAM 51.87 136 6.31 27.53% reduction

OSAM SB 54.58 138 6.33 27.34% reduction

Type RMF CPU%

Average total
task CPU time in

seconds
Total elapsed

time in minutes
Delta on total
elapsed time

VSAM 29.86 98 5.45

OSAM 27.00 57 3.50 35.78% reduction

OSAM SB 78.62 61 1.16 78.59% reduction

Chapter 5. Database performance 105

5.18 Buffer life concept

To help determine if more OSAM or VSAM buffers might avoid some reads, you can use a
buffer life concept.

Buffer life is a measure of how long a block or CI remains in the OSAM or VSAM buffer pool,
before its buffer is used for reading another block or CI. If the block or CI is there for less than
the life of a transaction or BMP synchronization interval, it is likely that repeated reads to the
same block might be needed to complete the work, and this should be avoided.

For online transactions, it is often beneficial to keep data in the buffer pool across user think
time. This allows successive transactions from the same user to use the same data without
incurring the cost of rereading it. Because user think times are often in the range of 15
seconds to a minute, buffer lifetimes of more than a minute are recommended.

Buffer life is an average. Some blocks might remain in the pool for much longer times and
some for much shorter times. For this reason, we recommend that buffer life is longer than
average think times. Five to 10 minutes is a reasonable goal. If buffer lifetimes are over 15
minutes, then it seems unlikely that more buffers would lead to significantly fewer reads.

Buffer life for a OSAM or VSAM pool can be calculated with the following formula:

Buffer life = (number of buffers x elapsed time) / number of reads

5.19 Overflow sequential access method (OSAM)

Overflow sequential access method (OSAM) is unique to, and is supplied with, IMS. IMS
communicates with OSAM using the OPEN, CLOSE, READ, and WRITE macros.

An OSAM database has these characteristics:

� An OSAM data set can be read using either the BSAM or QSAM access method.
� An OSAM data set does not need to be formatted before use.
� An OSAM data set can use fixed-length records blocked or unblocked.
� An OSAM data set can span multiple volumes.
� An OSAM data set has an 8 GB size limit.

Detailed information about how data is organized in an OSAM database can be found in the
IMS Version 9: Administration Guide: Database Manager, SC18-7806. For information about
defining OSAM subpools, refer to IMS Version 9 Installation Volume 2: System Definition and
Tailoring, GC18-7823.

5.19.1 Tuning OSAM buffers

There is one OSAM buffer pool, typically divided into multiple subpools. A subpool is a set of
buffers that are the same size, and the OSAM buffer pool is allowed to have multiple
subpools that all have same-size buffers. The definitions of the subpools are put in the
DFSVSMxx member (DFSVSAMP DD statement for batch).

The first thing you need to do when tuning OSAM buffers is make sure that you have a valid
buffer size. Refer to Table 5-1 on page 67 for valid OSAM buffer sizes. There is a minimum
number of four buffers required for each subpool and a maximum of 32 767. You can have
multiple subpools of the same size. This is useful, for example, for isolating lesser used
databases from the effects of much busier and “buffer-greedy” databases.

106 IMS Performance and Tuning Guide

IMS batch and utility jobs use the DFSVSAMP data set to specify buffers, and Transaction
Manager and DB Control use the IMS.PROCLIB member, DFSVSMnn. Look at Example 5-9.

Example 5-9 OSAM buffers

IOBF=(bufsize,# buffers,fix1,fix2,id)
DBD=dbdname(dataset number,id)

� IOBF= is a required keyword for the OSAM subpool definition.

� bufsize specifies the length of the buffers in the subpool.

� # buffers specifies the number of buffers in the subpool.

� fix1 specifies the buffer long-term page fixing option. If you specify Y, all buffers and
buffer prefixes associated with this subpool are long-term and page fixed at initialization of
the subpool. We recommend that you always page fix buffer prefixes, because OSAM
fixes buffers and prefixes at I/O time to prevent page faults. Rather than suffering the
overhead of taking the page fault, paging in the storage pool, fixing the storage pool, and
then unfixing it, it is better to fix them at initialization time from a performance perspective.

� fix2 specifies the buffer prefix long-term page fixing option. If you specify Y, all buffer
prefixes associated with this subpool and the subpool header are long-term and page
fixed at initialization of the subpool.

� id specifies a user-defined identifier to be assigned to a subpool.

� DBD= is used to assign the database data set to the OSAM buffer subpool with a matching
ID.

� dataset number is determined by the order of the DATASET macros in the specified DBD
for non-HALDB databases and for HALDBs, specify the data set number as an alphabetic
character.

When an OSAM database is “opened” by IMS, the database’s data set is assigned to a
subpool based on the DBD subpool ID assignment if one is there. If not, then IMS assigns it
to a subpool based on the blocksize of the data set. See Example 5-10.

Example 5-10 OSAM pool assignment

IOBF=(04096,1024,Y,Y,PROD)
IOBF=(04096,0123,N,Y)
IOBF=(18432,0050,Y,Y,CUST)
DBD=DHZDBCP1(1,PROD)
DBD=GMZDCUP1(2,CUST)

In Example 5-10, OSAM pool assignment, database DHZDBCP1 has been assigned to a buffer
pool called PROD. That pool has 1 024 4 K buffers (or 4 194 304 bytes of storage) assigned
to it for its individual use. Also, database GMZDCUP1 has been assigned to a buffer pool called
CUST. That pool has 50 18 K buffers (or 921 600 bytes of storage) assigned to it for its
individual use.

To tune the OSAM buffer pool, you need to monitor it. A good tool for that is the DC Monitor.
It is part of the base product of IMS and is turned on by issuing this command:

/TRACE SET ON MONITOR ALL

To turn the monitor off, issue this command:

/TRACE SET OFF MONITOR

Chapter 5. Database performance 107

We recommend that you run the monitor twice a day, during the two heaviest load times of
the day. Example 5-11 is one of the OSAM buffer pool reports. There is one report for each
pool.

Example 5-11 OSAM buffer pool statistics

IMS MONITOR *** BUFFER POOL STATISTICS *** TRACE START 2006 258, 13:43:12

 D A T A B A S E B U F F E R P O O L

 FIX PREFIX/BUFFERS Y/Y
 SUBPOOL ID PROD
 SUBPOOL BUFFER SIZE 4096
 TOTAL BUFFERS IN SUBPOOL 1024

 DIFFERENCE

 1 NUMBER OF LOCATE-TYPE CALLS 1981
 2 NUMBER OF REQUESTS TO CREATE NEW BLOCKS 18
 3 NUMBER OF BUFFER ALTER CALLS 4467
 4 NUMBER OF PURGE CALLS 1334
 5 NUMBER OF LOCATE-TYPE CALLS, DATA ALREADY IN OSAM POOL 139661
 6 NUMBER OF BUFFERS SEARCHED BY ALL LOCATE-TYPE CALLS 7006
 7 NUMBER OF READ I/O REQUESTS 9797
 8 NUMBER OF SINGLE BLOCK WRITES BY BUFFER STEAL ROUTINE 0
 9 NUMBER OF BLOCKS WRITTEN BY PURGE 2635
 10 NUMBER OF LOCATE CALLS WAITED DUE TO BUSY ID 0
 11 NUMBER OF LOCATE CALLS WAITED DUE TO BUFFER BUSY WRT 6
 12 NUMBER OF LOCATE CALLS WAITED DUE TO BUFFER BUSY READ 4129
 13 NUMBER OF BUFFER STEAL/PURGE WAITED FOR OWNERSHIP RLSE 0
 14 NUMBER OF BUFFER STEAL REQUESTS WAITED FOR BUFFERS 0
 15 TOTAL NUMBER OF I/O ERRORS FOR THIS SUBPOOL 0
 16 NUMBER OF BUFFERS LOCKED DUE TO WRITE ERRORS 0

 QUOTIENT : TOTAL NUMBER OF OSAM READS + OSAM WRITES = 1.02
 TOTAL NUMBER OF TRANSACTIONS

 DIFFERENCE
 17 NUMBER OF BLOCKS READ FROM CF 0
 18 NUMBER OF BLOCKS EXPECTED BUT NOT READ 0
 19 NUMBER OF BLOCKS WRITTEN TO CF (PRIME) 0
 20 NUMBER OF BLOCKS WRITTEN TO CF (CHANGED) 0
 21 NUMBER OF BLOCKS NOT WRITTEN (STORAGE CLASS FULL) 0
 22 NUMBER OF BLOCKS INVALIDATED WITH XI (VECTOR CALL RET) 0
 23 NUMBER OF XI CALLS ISSUED 0

Report analysis
Example 5-11 on page 108 is an OSAM buffer pool report for a subpool with 1 024 buffers,
each 4 KB in size.

There are numbers to the left of the line items in the report in Example 5-11 on page 108, but
these numbers are for your reference for this section only and do not appear on an actual
report:

108 IMS Performance and Tuning Guide

� Line 2: NUMBER OF REQUESTS TO CREATE NEW BLOCKS

Each count represents a format logical cylinder operation that extended a database data
set by one physical DASD cylinder.

One or more databases are likely to require reorganization to regain free space. Database
DBDs might need to be changed to increase free space.

� Line 4: NUMBER OF PURGE CALLS

Each count means the database subpools were purged of altered buffers for a dependent
region or batch job step.

� Line 5: NUMBER OF LOCATE-TYPE CALLS, DATA ALREADY IN OSAM POOL

Each count reflects the number of times a request for a block was satisfied from the
subpool; that is, a read operation was not required. This line item is used to calculate a hit
ratio for the subpool (discussed in “OSAM statistics” on page 110).

� Line 7: NUMBER OF READ I/O REQUESTS

The count reported is the number of requests that could not be satisfied from the contents
of the subpool and required that a block be read from a database data set on DASD. Use
tuning tactics to attempt to eliminate reads or, if they cannot be avoided, to perform them
as efficiently as possible. This line item is used to calculate a hit ratio for the subpool
(discussed in “OSAM statistics” on page 110).

� Line 8: NUMBER OF SINGLE BLOCK WRITES BY BUFFER STEAL ROUTINE

The count reflects the number of blocks written to database data sets as a result of altered
buffer steals. You can eliminate altered buffer steals entirely by judiciously balancing the
size (number of buffers) of the pool with timely application program sync points.

� Line 9: NUMBER OF BLOCKS WRITTEN BY PURGE

Because OSAM purge is the most efficient way to write altered OSAM buffers, the tuning
tactic is to write all altered buffers with OSAM purge and eliminate all OSAM-altered buffer
steals.

Buffer handler contention is represented by lines 10 through 14.

Contention means a request of the buffer handler waits until the condition indicated is reset.
These waits, from an IMS Monitor perspective, are reported as NOT-IWAIT time.

� Line 10: NUMBER OF LOCATE CALLS WAITED DUE TO BUSY ID

Each OSAM buffer has a buffer prefix. Whenever a prefix must be changed (to indicate a
changed attribute, for example), it is given an attribute of BUSY ID under the subpool
latch. Once BUSY ID is set, no other task can access the prefix or its associated buffer
contents. Any requests for the buffer prefix while it is busy must wait.

� Line 11: NUMBER OF LOCATE CALLS WAITED DUE TO BUFFER BUSY WRT

A request is made to access the contents of a buffer, but the contents of the buffer are in
the process of being written to the proper database data set. The write must complete
before any requestors can have access to the contents of the buffer.

� Line 12: NUMBER OF LOCATE CALLS WAITED DUE TO BUFFER BUSY READ

The explanation is the same as for Line 11, except the buffer is busy because a read is in
progress (a previous requestor required the same OSAM block). NUMBER OF LOCATE
CALLS WAITED DUE TO BUFFER BUSY READ can be thought of as a good form of
contention, in that a single read can satisfy multiple requests of the buffer handler.

� Line 13: NUMBER OF BUFFER STEAL/PURGE WAITED FOR OWNERSHIP RLSE

Chapter 5. Database performance 109

The OSAM steal or purge routine cannot steal or purge a buffer that is owned by another
requestor. Steal or purge must wait until ownership is released.

� Line 14: NUMBER OF BUFFER STEAL REQUESTS WAITED FOR BUFFERS

The buffer steal routine is required to steal a buffer to satisfy a read request. Counts
indicate that the steal routine went through its complete algorithm and could not find a
suitable buffer to steal.

OSAM statistics
Several statistics are of use when analyzing an OSAM database subpool. The following are
some of the more common statistics used.

Hit ratio
A subpool hit ratio is calculated as follows:

Line 5
 Hit Ratio = ——————————————— X 100 = xx.x%

Line 5 + Line 7

For Example 5-11 on page 108, Example 5-11 on page 108, the hit ratio calculation is as
follows:

139,661
 Ratio = ——————————————— X 100 = 93.4%

139,661 + 9,797

By itself, a hit ratio means nothing. Hit ratios are generally useful when making run-to-run
comparisons. If a change is made to a particular subpool and the hit ratio increases, it is
highly likely that the increased hit ratio represents an improvement.

Reads per second and writes per second
Reads per second are simply “NUMBER OF READ I/O REQUESTS” (Line 7) divided by the
monitor interval in seconds. The tuning goal is to reduce this number.

Writes per second are “NUMBER OF SINGLE BLOCK WRITES BY BUFFER STEAL
ROUTINE” (Line 8) plus “NUMBER OF BLOCKS WRITTEN BY PURGE” (Line 9), all divided
by the monitor interval in seconds. The tuning goal is to reduce this number.

Buffer life
This statistic is useful for online systems. It is calculated as follows:

No. of buffers in subpool X Monitor Interval
 Buffer Life = ———

NUMBER OF READ I/O REQUESTS (Line 7)

Buffer life is the average life in seconds of the contents of a buffer in a subpool. When the
average buffer life is in tens of seconds, then the subpool is holding buffer contents across a
user’s think time. When buffer life is low, such as less than 1 buffer-second per read, it is
generally beneficial to dramatically increase the number of buffers in a subpool.

Use buffer life with reads per second. For example, if the number of buffers in a subpool is
increased, the goal is for buffer life to increase and reads per second to decrease. If reads per
second do not decrease, then the increase in the number of buffers is not beneficial and not
worth the extra demand placed on real storage by the additional buffers.

110 IMS Performance and Tuning Guide

Keep these things in mind as you tune
Things to consider when tuning:

� On the OSAM Buffer Pool Statistics report (Database Buffer Pool)

– As you tune the buffers, the difference on the following lines should be going up:

• NUMBER OF LOCATE-TYPE CALLS, DATA ALREADY IN OSAM POOL (Line 5)

• NUMBER OF BLOCKS WRITTEN BY PURGE (Line 9)

– As you tune the buffers, the difference on the following lines should be going down:

• NUMBER OF REQUESTS TO CREATE NEW BLOCKS (Line 2)

• NUMBER OF READ I/O REQUESTS (Line 7)

• NUMBER OF SINGLE BLOCK WRITES BY BUFFER STEAL ROUTINE (Line 8)

� As you tune the buffers, there should be an increase in the percentage found in the pool
(Hit Ratio).

� As you tune the buffers, there should be a decrease in the percentage of buffer flushes.
Buffer flushes are defined as:

Line 8
Buffer flushes = ——————————————— X 100 = xx.x%

Line 8 + Line 9

For this example, the buffer flushes ratio calculation is as follows:

0
Buffer flushes = —————————— X 100 = 0%

2,635 + 0

OSAM tuning general rules
These are good rules to follow:

� 60% or better hit ratio.
� Always page fix buffer prefixes.
� Page fix buffers if real storage permits.
� Isolate high activity databases in their own subpool.
� Match block size with a valid OSAM buffer size.
� For sequential-read BMPs and batch:

– Use the largest block size possible.
– Use sequential buffering.
– Use 3990-3 cache controller.

5.19.2 OSAM data set notes

Do not use the BLOCK= parameter in the DBD source; use SIZE= parameter instead.

If you make minor changes to your DBD (for example, changing the number of RAPs) and
neglect to update BLOCK=, you will not use the buffer size that you expected. This can be
very bad for performance.

The OSAM data set can be allocated at either load time through JCL or preallocated using
something similar to IEFBR14.

Do not specify any DCB parameters in the JCL when allocating the database data set. IMS
creates the DCB information from the DBD information in DBDLIB. Always include secondary
space allocation.

Chapter 5. Database performance 111

Preallocate only the number of volumes for OSAM data set extents that will be used during
initial load or reload process. If a volume is not used, it does not have a valid end-of-file (EOF)
mark, which causes OSAM to scan the entire DB to find the true EOF mark.

Do not reuse multivolume OSAM data set extents without first scratching and reallocating the
space. There can be an invalid EOF that was left on the last volume. Inserts can be placed in
the database after the old end-of-file marker. Some utilities, such as Image Copy, ignore
anything after the new EOF.

OSAM data sets have the following characteristics:

� A maximum of 60 DASD extents.
� The maximum data set size is 8 gigabytes.
� Fixed length records, unblocked.

Here are some advantages of OSAM:

� Shorter path length than VSAM
� More choices for buffer sizes
� One I/O request writes multiple blocks to a track:

– DB LOAD or DB RELOAD
– Synchronization point

OSAM is good. VSAM is used for indexes.

5.19.3 OSAM sequential buffering

OSAM sequential buffering can be invoked in four ways. It can be invoked by an exit in IMS, in
a PSB, by coding a control card in your JCL, or by having SBONLINE keyword included in
DFSVSMxx IMS.PROCLIB member. In tests that have been run on a 721 437 record
database (3 790 161 total segments) with an average database record length of 3 079 bytes,
using get next processing, it takes 13 minutes without the use of sequential buffering. It only
took five minutes with OSAM sequential buffering.

Sequential buffering can run in DLI, BMP, and MPP modes. To use sequential buffering in the
BMP environment, the keyword SBONLINE must be in the DFSVSMnn member in
IMS.PROCLIB.

Sequential buffering evaluates whether it should read ahead, based on how the program is
accessing the data. If the evaluation shows that the program is randomly looking at the data,
read ahead is not invoked. After another five hundred DL/I calls, sequential buffering
evaluates the way that the program is accessing the data again. If this time, sequential
buffering thinks you are sequentially going through the data, it turns on sequential buffering.

The exit for IMS is in SDFSRESL. If member DFSSBUX0 is there, then sequential buffering is
invoked. IBM has supplied five sample exits in SDFSRESL that can be used. The first routine
(DFSSBU1) disallows sequential buffering. Routines two through four (DFSSBU2 -
DFSSBU4) allow sequential buffering. Exit routine nine (DFSSBU9) allows sequential
buffering only for certain hours during the day. Look in the IMS Version 9: Customization
Guide, SC18-7817, for the coding of these exits.

The second way to specify the use of sequential buffering is in the PSB on the PCB level. The
keyword is “SB=COND”. This tells IMS that you want to conditionally use sequential buffering.
The default is “SB=NO”. Review the IMS Version 9 Utilities Reference: System, SC18-7834
manual for more information.

112 IMS Performance and Tuning Guide

Sequential buffering can be requested in the JCL that you are executing by a “//DFSCTL”
statement. Through this control card, you can tell IMS to use sequential buffering, the
databases on which to use it, the PSB on which to use it, or the DD name on which you want
to use sequential buffering.

You can also tell IMS how many buffer sets to use. Buffer sets are what sequential buffering
uses to hold data. Normally, IMS reads in one block at a time. Sequential buffering reads in 10
blocks at a time into these sets of buffers. The default buffer set is 4 and can be raised up to
25 sets. Sequential buffering fills 10 buffers and passes the data to OSAM buffers as they are
requested. While that data is being given to OSAM, sequential buffering might read ahead
another 10 buffers, and wait until OSAM starts requesting those buffers. Sequential buffering
tries to keep one set ahead of OSAM, so you should base your selection of the number of
buffer sets on the number of tasks that can be using sequential buffering at any given time.
Example 5-12 on page 113 is the syntax of the control statement. SBPARM starts in column
one.

Example 5-12 DFSCTL control statement

SBPARM ACTIV=COND,
 BUFSETS=16

Look in the IMS Version 9 Installation Volume 2: System Definition and Tailoring, GC18-7823,
manual for more information about what can be coded on this card.

Another statement to code in your JCL is the “//DFSSTAT” statement. This statement gives
information about what sequential buffering did or did not do. You would only code this
statement to see if a job is a good candidate for sequential processing. If the statistics show
that this job is doing sequential processing, then you would turn on sequential buffering and
use this output as an indicator to see how much sequential buffering helped. Look at the
statistics in Example 5-13 to see if sequential buffering would be helpful.

Example 5-13 PST accounting statistics

*** PST ACCOUNTING STATISTICS ***
DB GU CALLS 0
DB GN CALLS 3,790,161
DB GNP CALLS 0
DB GHU CALLS 0
DB GHN CALLS 0
DB GHNP CALLS 0
DB ISRT CALLS 0
DB DLET CALLS 0
DB REPL CALLS 0
DB CALLS (TOTAL) 3,790,161
DB DEQ CALLS 0

Because this job is doing more get next than get unique calls, this program is a good
candidate for sequential buffering. The next report to look at is “SEQUENTIAL BUFFERING
SUMMARY FOR THE APPLICATION” in Example 5-14. This report tells you if sequential
buffering was turned on.

Example 5-14 Sequential buffering summary for the application

*** SEQUENTIAL BUFFERING SUMMARY FOR THE APPLICATION ***

DFSSBUX0 DISALLOWED USAGE OF SB: NO
DFSSBUX0 REQUESTED CONDITIONAL SB ACTIVATION: YES
AT LEAST ONE SB= KEYWORD IN PSB: YES

Chapter 5. Database performance 113

AT LEAST ONE SBPARM CONTROL STMT FOR APPLICATION: YES
SBPARM CONTROL CARD(S) READ FROM //DFSCTL: YES
AT LEAST ONE SBPARM PSB= SPECIFIED THAT MATCHED PSB: NO
AT LEAST ONE SBPARM DB= SPECIFIED THAT MATCHED DB: NO
AT LEAST ONE SBPARM PCB= SPECIFIED THAT MATCHED PCB: NO
AT LEAST ONE SBPARM DD= SPECIFIED THAT MATCHED DD: NO

Because sequential buffering was not turned off and AT LEAST ONE SB= KEYWORD IN
PSB says YES (this is a BMP run), sequential buffering is used in this run.

To find how much I/O was saved, find the report and look for “NUMBER OF SEARCH
REQUESTS ISSUED BY OSAM BH: SEARCH”, Example 5-15 on page 114, and obtain the
number across from it (in this case, 95 240). This is the number of I/O requests that would
have happened if sequential buffering was not used. Next, you need to add together these
two numbers. “NUMBER OF READ I/O: RANDOM READ” and “NUMBER OF READ I/O:
SEQUENTIAL READ.” This is the number of I/O that was incurred when the job ran.
(Here it is 1 600 + 9 466 = 11 066.) You then take this number and subtract it from the number
in the search to get the number of I/Os that was saved. Here we have 95 240 - 11 066 =
84 174 I/Os saved by using sequential buffering. If you were to multiply this number by the
time that it takes to do an I/O, you would have a good idea of how much time was saved
(84 174 X 0.0053 = 446.1222 seconds saved, or almost 7.5 minutes). This job’s I/O time
would have been 504.772 seconds (95 240 X 0.0053) without sequential buffering, yet with
sequential buffering, its time was 58.6498 seconds (11 066 X 0.0053).

Example 5-15 NUMBER OF SEARCH REQUESTS ISSUED BY OSAM BH: SEARCH

NUMBER OF SEARCH REQUESTS ISSUED BY OSAM BH:
 SEARCH 95,240

NUMBER OF READ I/O:
 RANDOM READ 1,600
 SEQUENTIAL READ 9,466

NUMBER OF BLOCKS READ:
 TOTAL NUMBER BLOCKS READ 96,260
 NBR BLOCKS READ AT RANDOM 1,600 PCT OF TOTAL: 1.66
 NBR BLOCKS READ SEQUENTIALLY 94,660 PCT OF TOTAL: 98.33

PERCENT READ PER SEARCH REQUEST 11.61

NUMBER OF SEQUENTIAL I/O ERRORS 0

Another number to look at is “NBR BLOCKS READ SEQUENTIALLY.” If this number is high,
then sequential buffering probably helped speed up this run. If “PERCENT READ PER
SEARCH REQUESTS” is low, then sequential buffering helped speed up this run.

Example 5-16 Sequential buffering (SB) DETAIL STATISTICS (PAGE A)

*** SB DETAIL STATISTICS (PAGE A) ***

PSB PFZP9990

DB PFZDABP1
PCB
DB-PCB NBR 44
DSG-CB NBR 2
DD PFZDABP1
DB-ORG HIDAM
DD-TYPE *PSDATA

114 IMS Performance and Tuning Guide

NBR OF BUFSETS 16

** NUMBER OF SEARCH REQUESTS ISSUED BY OSAM BH:
 SEARCH 94,366

** NUMBER OF READ I/O:
 TOTAL 10,193
 RANDOM READ 727
 SYNCHRONOUS SEQUENTIAL READ 3
 OVERLAPPED SEQUENTIAL READ 9,463

** NUMBER OF BLOCKS READ:
 TOTAL 95,387
 RANDOM READ 727 PCT OF TOTAL: .76
 SYNCHRONOUS SEQUENTIAL READ 30 PCT OF TOTAL: .03
 OVERLAPPED SEQUENTIAL READ 94,630 PCT OF TOTAL: 99.20

** AVERAGE I/O WAIT TIMES (MILLIS):
 RANDOM READ 3.47
 SYNCHRONOUS SEQUENTIAL READ 63.66
 OVERLAPPED SEQUENTIAL READ 4.89

The report in Example 5-16 on page 114 is for each database that IMS reviewed for
sequential buffering. The “NBR OF BUFSETS” is the number of buffer sets that you designate
in the “DFSCTL” statement. You can also find the number of I/Os saved by subtracting
“NUMBER OF READ I/O: TOTAL” from the “NUMBER OF SEARCH REQUESTS ISSUED BY
OSAM BH: SEARCH.”

If “NUMBER OF BLOCKS READ: RANDOM READ” is high, and you were going through the
database sequentially, then the database probably needs to be reorganized. If “NUMBER OF
BLOCKS READ: OVERLAPPED SEQUENTIAL READ” is high, then sequential buffering
helped speed up the job.

Sequential buffering is beneficial in online image copy, HD reorganization unload, partial
database reorganization, surveyor, database scan, and database prefix update.

5.20 Virtual storage access method (VSAM)

VSAM is one of several DASD access methods used in z/OS. IMS uses two of the five
storage methods in VSAM: the key-sequenced data set (KSDS) and the entry-sequenced
data set (ESDS).

5.20.1 Tuning VSAM buffers

VSAM Local Shared Resource (LSR) pool contains buffers used by the VSAM index and data
components. Buffers of equal length are combined into subpools. The definitions of the
subpools are put in the DFSVSMxx member (DFSVSAMP DD statement for batch) and are
allocated by CI size.

The first thing you need to do when tuning VSAM buffers is make sure that you have a valid
buffer size. Refer to Table 5-2 on page 68 for valid VSAM buffer sizes. There is a minimum
number of three buffers required for each subpool and a maximum of 32 767. All subpools are
allocated on 4 096 page boundaries. What this means is that when you add up the space you
have allocated for your subpool, it must be divisible by 4 096. Subpools can be specified as

Chapter 5. Database performance 115

either “D” for data (only the data portion of a KSDS or ESDS can use this pool) or “I” for index
(only the index portion of a KSDS can use this pool) or none at all. You can have multiple
subpools of the same size, but if you have an index only subpool, you must have a data only
subpool too. This is useful for isolating lesser used databases from the effects of much busier
and “buffer-greedy” databases.

IMS batch and utility jobs use the DFSVSAMP data set to specify buffers, and Transaction
Manager and DB Control use the IMS.PROCLIB member, DFSVSMnn. Refer to
Example 5-17.

Example 5-17 VSAM buffers

POOLID=id,FIXDATA=,FIXINDEX=,FIXBLOCK=
VSRBF=buffersize,number of buffers,type,HS,HSn
DBD=dbdname(dataset number,id,ERASE=,FREESPACE=)

The fields in Example 5-17 on page 116 are:

� POOLID= is a required keyword for VSAM shared resource pool definition. It must begin in
the first position of the control statement. The total number of POOLIDs must not exceed 16.

� id is a one- to four-character alphanumeric field that specifies a user identifier assigned to
a shared resource pool that is used with the DBD statement to direct a given data set to a
specific shared pool.

� FIXDATA= is either YES or NO and specifies the data shared resource pool long-term page
fixing option.

� FIXINDEX= YES causes all buffers in the index shared resource pool to be long-term page
fixed at initialization of the shared resource pool. A NO does not long-term page fix the
buffers.

� FIXBLOCK= specifies the I/O-related control block’s long-term page fixing option. If YES is
specified, all I/O-related control blocks are long-term page fixed at initialization of the
shared resource pool. If NO is specified, no I/O-related control blocks are long-term page
fixed. We recommend that you always specify YES for this option.

� VSRBF= is the keyword for VSAM subpool definition.

� buffersize is a three- to five-digit number specifying the buffer size for this subpool.

� number-of-buffers is a one- to five-digit number (3 to 32 767) specifying the number of
buffers in this subpool. If you specify a number of buffers less than the minimum number
required, IMS increases the number to the minimum and issues a warning message.

� type is a one-character field that specifies whether the subpool in the shared resource
pool is an index subpool (I) or a data subpool (D). This parameter is optional. When you do
specify D or I in any VSRBF statement, you must also specify a type of I for each size that
might be required to handle index buffering requests.

� HS is for HSO or HSR. These parameters optionally specify the kind of action IMS should
take if Hiperspace™ (extended storage on z/OS) buffering for this subpool is not available.
HSO Indicates that Hiperspace buffering is optional, and IMS can continue initialization
without Hiperspace buffering. HSR Indicates that Hiperspace buffering is required, and IMS
must terminate if Hiperspace buffering is not available.

� HSn= is an optional one- to eight- digit number n ranging from (3 to 16 777 215) that
specifies the number of Hiperspace buffers to build for this subpool. HSO, HSR, and HSn are
valid only on 4 K and larger boundaries.

� DBD= specifies, if coded, that the data set having a matching ID parameter, as defined on
the POOLID shared pool definition statement, is to be directed to the indicated shared

116 IMS Performance and Tuning Guide

resource pool. Then, a subpool within the assigned shared resource pool is assigned to
the data set based upon buffer length.

� dataset number identifies the specific data set of a data set group within a database
(identified by the dbdname parameter) that requests assignment of a specific shared pool.
The number is an IMS internally assigned value between 1 and 10. For data organizations
such as primary index, unique secondary index, and HISAM without dependent segments,
the primary data set of the data set group is assigned data set number 1. No secondary
data set of the data set group exists for these data organizations.

For HALDBs, specify the data set number as an alphabetic character. The valid data set
characters defined for HALDB partition data sets are A through J, L, and X. (When HALDB
Online Reorganization is used, data sets M through V and Y are automatically directed to
the same shared resource pools for data sets A through J and X. The specification of M
through V and Y are not valid.)

� ERASE= Is either a YES or a NO and indicates the treatment of logical records that are
deleted. YES indicates that the deleted record should be erased. NO indicates that the
deleted record should not be erased, but should be marked as a deleted record. This
applies only to KSDS data sets.

� FREESPACE= is either a YES or a NO indicating the treatment of the defined free space
percent in the KSDS. If YES is specified, the defined free space should be preserved. If NO
is specified, the defined free space should not be preserved.

� The word OPTIONS starting in position one identifies the OPTIONS statement.

� BGWRT= YES or NO, which specifies whether the background write function of the buffer
handler is to be active. You can also activate background write by coding BGWRT=(YES,n) or
omitting the parameter. n: is a two-digit number from 10 to 99 specifying the percentage of
buffers in each subpool to be considered as candidates for writing by the background write
function. For an explanation of background write, see “VSAM background write” on
page 118 or “Determining Which VSAM Options to Use” in IMS Version 9: Administration
Guide: Database Manager, SC18-7806.

� VSAMPLS=LOCL specifies that the VSAM shared resource pools are to be built.

For more information about these parameters and many more, consult the IMS Version 9
Installation Volume 2: System Definition and Tailoring, GC18-7823, manual.

In Example 5-18, VSAM pool assignments, there are two pools assigned, POOLID=1 and
POOLID=SZ. POOLID=1 is a general use pool where a 2 K pool is split with a data
component and a corresponding index component. The 4 K pool has the same split as the
2 K pool. There are also an 8 K and a 12 K pool specified. The second pool is called SZ for
the KCDDSZP1 database’s indexes; KCDDSZI1, KCDDSZS1, and KCDDSZS2. Since the
application reads these three indexes sequentially as stand-alone databases, their data CI
size was allocated at 24 K with an index CI size of 4 K. At a later time, two more indexes were
discovered being read sequentially (SASDDHS1 and GRVDGMS6) and were added to the
same buffer pool.

Example 5-18 VSAM pool assignments

OPTIONS,BGWRT=(YES,45),VSAMPLS=LOCL
POOLID=1,FIXDATA=NO,FIXINDEX=NO,FIXBLOCK=YES
VSRBF=02048,0500,D
VSRBF=02048,0100,I
VSRBF=04096,1436,D
VSRBF=04096,0100,I
VSRBF=08192,0256
VSRBF=12288,0016
POOLID=SZ,FIXDATA=NO,FIXINDEX=NO,FIXBLOCK=YES

Chapter 5. Database performance 117

VSRBF=24576,0512,D,HSO,HS19000
VSRBF=04096,0256,I,HSO,HS04688
DBD=KCDDSZI1(1,SZ,ERASE=Y,FREESPACE=N)
DBD=KCDDSZS1(1,SZ,ERASE=Y,FREESPACE=N)
DBD=KCDDSZS2(1,SZ,ERASE=Y,FREESPACE=N)
DBD=SASDDHS1(1,SZ,ERASE=Y,FREESPACE=N)
DBD=GRVDGMS6(1,SZ,ERASE=Y,FREESPACE=N)

5.20.2 VSAM background write

This is a VSAM-only feature that uses a lower-priority asynchronous task to write out updated
buffers whenever a subpool becomes completely full of updated buffers. The objective is to
make buffers eligible for stealing so that applications do not have to wait on a space write
before being able to read in a new CI.

The BGWRT task is dispatched as an asynchronous low-priority task in either the IMS control
region (with LSO=Y) or the DL/I separate address space (with LSO=S).

The BGWRT task processes each VSAM subpool in turn. For each subpool, it examines the
specified percentage of buffers on the least recently used (LRU) chain. Any modified buffers it
finds are written to DASD.

Background write does not prevent reuse of these buffers. If a subsequent request requires
the data in the buffer before the buffer manager needs the buffer for a new block, the buffer is
used to satisfy the request and is placed on the top of the buffer-use chain.

5.20.3 VSAM hiperspace buffers

Hiperspace is a z/OS facility for storing data, specifically geared for high-performance reads
and writes, in memory. IMS provides support for VSAM Hiperspace buffering capability.

Hiperspace buffering offers potential DL/I performance improvements through VSAM I/O
avoidance. This is achieved by reducing the requirement for DASD I/O as VSAM finds
reassessed buffers in Hiperspace.

The following benefits can be obtained by using VSAM Hiperspace:

� Significant improvements in VSAM buffer hit ratio
� VSAM I/O reduction
� Reduction in internal elapsed time and region occupancy

When considering VSAM Hiperspace implementation, you should weigh a number of factors
to assess potential benefits. We recommend that you evaluate each of the following as it
applies to your situation:

� A primary consideration is to determine the amount of your overall database I/O activity
that is VSAM. OSAM databases are not eligible for Hiperspace, so only the percentage of
your total read I/O that is VSAM can benefit.

Hiperspace operates on 4 096 blocks so only buffer sizes of 4 KB or larger can use
Hiperspace.

� Hiperspace benefits read access only; it offers no benefit to database updates.

� Adequate available memory is important. If you plan to specify a large number of
Hiperspace buffers, be sure you have enough storage to contain them. Hiperspace is
never migrated to “auxiliary” storage. Hiperspace does not have to be backed up,
because, if the system becomes constrained and starts stealing storage frames from

118 IMS Performance and Tuning Guide

Hiperspace (possibly causing a read or write to fail), then IMS can always revert to using
DASD to retrieve the lost data.

� VSAM database candidates for Hiperspace usage include these:

– Small, heavily referenced databases.

Less Hiperspace is required to cache a larger percentage of a small database.

– Databases with skewed access patterns.

A database that has a small percentage of the total amount of data and is frequently
accessed is a good candidate.

– High read:write ratio databases.

Hiperspace benefits read access; therefore, databases that have less update activity
have a greater potential for I/O reduction.

– Large index data sets.

Index data sets are typically very good candidates, because they are relatively small
and are frequently accessed.

To tune the VSAM buffer pool, you need to monitor it. A good tool for that is the IMS Monitor.
It is part of the base product of IMS and is turned on by issuing this command:

/TRACE SET ON MONITOR ALL

To turn the monitor off, issue this command:

/TRACE SET OFF MONITOR

We recommend that you run the monitor twice a day, during the two heaviest load times of the
day. Example 5-19 is one of the VSAM buffer pool reports. There is one report for each pool.

Example 5-19 VSAM buffer pool statistics

IMS MONITOR *** BUFFER POOL STATISTICS *** TRACE START 2006 258, 13:43:12

 V S A M B U F F E R P O O L

 FIX INDEX/BLOCK/DATA N/N/Y
 SHARED RESOURCE POOL ID SZ
 SHARED RESOURCE POOL TYPE D
 SUBPOOL ID 1
 SUBPOOL BUFFER SIZE 24576
 NUMBER HIPERSPACE BUFFERS 19000
 TOTAL BUFFERS IN SUBPOOL 512

 DIFFERENCE
 1 NUMBER OF RETRIEVE BY RBA CALLS RECEIVED BY BUF HNDLR 0
 2 NUMBER OF RETRIEVE BY KEY CALLS 1898
 3 NUMBER OF LOGICAL RECORDS INSERTED INTO ESDS 0
 4 NUMBER OF LOGICAL RECORDS INSERTED INTO KSDS 4524
 5 NUMBER OF LOGICAL RECORDS ALTERED IN THIS SUBPOOL 9489
 6 NUMBER OF TIMES BACKGROUND WRITE FUNCTION INVOKED 0
 7 NUMBER OF SYNCHRONIZATION CALLS RECEIVED 3843
 8 NUMBER OF WRITE ERROR BUFFERS CURRENTLY IN THE SUBPOOL 0
 9 LARGEST NUMBER OF WRITE ERRORS IN THE SUBPOOL 0
 10 NUMBER OF VSAM GET CALLS ISSUED 3264

Chapter 5. Database performance 119

 11 NUMBER OF VSAM SCHBFR CALLS ISSUED 0
 12 NUMBER OF TIMES CTRL INTERVAL REQUESTED ALREADY IN POOL 112995
 13 NUMBER OF CTRL INTERVALS READ FROM EXTERNAL STORAGE 12163
 14 NUMBER OF VSAM WRITES INITIATED BY IMS/ESA 16210
 15 NUMBER OF VSAM WRITES TO MAKE SPACE IN THE POOL 0
 16 NUMBER OF VSAM READS FROM HIPERSPACE BUFFERS 2367
 17 NUMBER OF VSAM WRITES TO HIPERSPACE BUFFERS 2884
 18 NUMBER OF FAILED VSAM READS FROM HIPERSPACE BUFFERS 0
 19 NUMBER OF FAILED VSAM WRITES TO HIPERSPACE BUFFERS 113

 QUOTIENT : TOTAL NUMBER OF VSAM READS + VSAM WRITES = 2.14
 TOTAL NUMBER OF TRANSACTIONS

Report analysis
Example 5-19 on page 119 is a VSAM Buffer Pool report for a subpool with 512 buffers, each
24 KB in size. The numbers to the left of the line items in the report are for your reference only
and do not appear on the actual report. The line descriptions are:

� Line 3: NUMBER OF LOGICAL RECORDS INSERTED INTO ESDS

Counts in this field indicate the IMS-maintained logical end-of-file (EOF) marker has been
moved to extend one or more ESDSs. In VSAM terms, the EOF is moved one CA at a
time.

These counts indicate that one or more data sets are extended to satisfy requests for
space as a result of inserts or variable length replaces where the replaced segment had to
be split. One or more databases are likely to require reorganization to regain free space.
Database DBDs might need to be changed to increase free space specifications.

� Line 6: NUMBER OF TIMES BACKGROUND WRITE FUNCTION INVOKED

Counts in this field indicate that background write is active. If the count field is zero,
background write might or might not be turned off. If the count field is zero and altered
buffer steals are occurring (see Line 15 of Example 5-19 on page 119), it is likely that
background write is turned off.

Background write is activated by control card input (//DFSVSAMP DD statement in batch
or DFSVSMxx member for online systems). By default, background write is active. If
turned off, we recommend you turn it on (see 5.20.2, “VSAM background write” on
page 118).

� Line 7: NUMBER OF SYNCHRONIZATION CALLS RECEIVED

This count is incremented for every transaction sync point and every BMP CHKP and SYNC
call. Only when every transaction updates buffers in a subpool does the count match the
number of buffer purge calls.

� Line 11: NUMBER OF VSAM SCHBFR CALLS ISSUED

SCHBFR is an IMS macro that might be translated as a search buffer. A large number
indicates the subpool is frequently being scanned in a search for space. If this is a batch
monitor, the VSAM statistics report identifies which database data sets are incurring the
SCHBFR calls and, thus, are good candidates for reorganization or re-specification of free
space.

Note: An ISRT call typically causes multiple SCHBFR requests to be issued. Even
when SCHBFR finds a buffer in the subpool, IMS examines it to see if there is sufficient
room for the segment. If not, another SCHBFR is issued to continue the scan of the
subpool.

120 IMS Performance and Tuning Guide

� Line 12: NUMBER OF TIMES CTRL INTERVAL REQUESTED ALREADY IN POOL

This count indicates the number of times a request for a CI was satisfied from the subpool
and therefore a read operation was not required. It is used to calculate a hit ratio for the
subpool (discussed under 5.20.4, “VSAM statistics” on page 121 at the end of this list).

� Line 13: NUMBER OF CTRL INTERVALS READ FROM EXTERNAL STORAGE

The count reports the number of requests that could not be satisfied from the contents of
the subpool and had to be read in from a database data set on DASD.

Use tuning tactics to attempt to eliminate reads or, if they cannot be avoided, to perform
the reads in as efficient a manner as possible. This line item is used to calculate a hit ratio
for the subpool (discussed in 5.20.4, “VSAM statistics” on page 121).

� Line 14: NUMBER OF VSAM WRITES INITIATED BY IMS/ESA

The count reports the number of CIs written to database data sets as a result of
application program sync points (including CHKP and SYNC calls) and background write.

� Line 15: NUMBER OF VSAM WRITES TO MAKE SPACE IN THE POOL

The count reflects the number of CIs written to database data sets as a result of altered
buffer steals.

� Lines 16 and 17: NUMBER OF VSAM READS FROM HIPERSPACE BUFFERS and
NUMBER OF VSAM WRITES TO HIPERSPACE BUFFERS

The reads (Line 16) reflect a request of the buffer handler that was satisfied from
Hiperspace. The writes (Line 17) reflect the movement of CIs from the virtual storage
subpool buffers to Hiperspace. Every read from DASD or Hiperspace into the virtual
storage subpool results in a write to Hiperspace.

The ratio of writes and reads to and from Hiperspace is an indication of its effective use.
Reasons for using Hiperspace rather than virtual storage buffers include these:

– A VSAM subpool in virtual storage is limited to 32 KB buffers. But there is no practical
limit to the number of Hiperspace buffers that can be used.

– From a buffer handler point of view, SCHBFR (NUMBER OF VSAM SCHBFR CALLS
ISSUED, Line 11) requests consume CPU resource; the more buffers in a subpool, the
longer the path length. SCHBFR requests do not search Hiperspace buffers.
Therefore, if SCHBFR requests are perceived to be a problem, placing most of the
buffers in Hiperspace reduces the path length required to satisfy the requests.

For HIDAM, a better solution is to provide enough free space so that the most desirable
and second-most desirable CIs have enough space to satisfy requests and then to
schedule timely database reorganizations to buy back that free space when required.

VSAM reads from Hiperspace buffers are used to calculate a hit ratio for the subpool
(discussed in 5.20.4, “VSAM statistics” on page 121).

� Lines 18 and 19: NUMBER OF FAILED VSAM READS FROM HIPERSPACE BUFFERS
and NUMBER OF FAILED VSAM WRITES TO HIPERSPACE BUFFERS

Counts in either of these two fields indicate that storage is overextended. Hiperspace, as
implemented by VSAM, does not guarantee that Hiperspace buffers are not lost.

5.20.4 VSAM statistics

Several statistics are of use when analyzing a VSAM database subpool. The following are
some of the more common statistics used:

� Hit Ratio

A subpool hit ratio is calculated as follows:

Chapter 5. Database performance 121

Line 12 + 16
Hit Ratio = ——————————————————————————— X 100 = xx.x%

Line 12 + Line 13 + Line 16

For this example, the hit ratio calculation is as follows:

112,995 + 2,367
Hit Ratio = ———————————————————————— X 100 = 90.5%

112,995 + 12,163 + 2,367

By itself, a hit ratio means nothing. Hit ratios are generally useful when making run-to-run
comparisons. If a change is made to a particular subpool and the hit ratio increases, it is
highly likely that the increased hit ratio represents an improvement. This is a good thing,
because as you tune the buffers, there should be a increase in the percentage found in the
pool. That is, the hit ratio should go up.

� Reads per second and writes per second

Reads per second are simply “NUMBER OF CTRL INTERVALS READ FROM
EXTERNAL STORAGE” (Line 13) divided by the monitor interval in seconds. The tuning
goal is to reduce this number.

Writes per second are “NUMBER OF VSAM WRITES INITIATED BY IMS/ESA” (Line 14)
plus “NUMBER OF VSAM WRITES TO MAKE SPACE IN THE POOL” (Line 15), all
divided by the monitor interval in seconds. The tuning goal is to reduce this number.

� Buffer life

This statistic is useful for online systems. It is calculated as follows:

 No. of buffers in subpool X Monitor Interval
Buffer Life = ———

NUMBER OF CTRL INTERVALS READ FROM EXTERNAL STORAGE (Line 13)

Buffer life is the average life in seconds of the contents of a buffer in a subpool. When the
average buffer life is in tens of seconds, then the subpool is holding buffer contents across
a user's think time. When buffer life is low, such as less than 1 buffer-second per read, it is
generally beneficial to increase the number of buffers in a subpool dramatically.

� Buffer flushes/washes

A subpool buffer flushes/washes ratio is calculated as follows:

Line 15
Buffer flushes/washes = ————————————————— X 100 = xx.x%

Line 14 + Line 15

For this example, the flushes/washes ratio calculation is as follows:

0
Buffer flushes/washes = —————————— X 100 = 0%

16,210 + 0

As you tune the buffers, there should be a decrease in the percentage of buffer
flushes/washes.

� Total I/O

Total I/O for this buffer subpool is the sum of Line 13 + Line 14 + Line 15.
12,163 + 16,210 + 0 = 28,373

As you tune the buffers, the difference on the following lines should be going up:

� NUMBER OF TIMES CTRL INTERVAL REQUESTED ALREADY IN POOL (Line 12)
� NUMBER OF VSAM WRITES INITIATED BY IMS/ESA (Line 14)

As you tune the buffers, the difference on the following lines should be going down:

122 IMS Performance and Tuning Guide

� NUMBER OF CTRL INTERVALS READ FROM EXTERNAL STORAGE (Line 13)
� NUMBER OF VSAM WRITES TO MAKE SPACE IN THE POOL (Line 15)

For VSAM tuning general rules, see Appendix A.7, “VSAM tuning general rules” on page 229.

5.20.5 Tuning VSAM data sets

VSAM data sets use a Control Interval (CI) for the basic unit of storage. A CI is formed by
physical records, usually just one. A CI is a contiguous area of storage that VSAM uses to
store data records and control information that describes the records. A CI is the unit of
information that VSAM transfers between the storage device and the processor during one
I/O operation. CIs are contained in a control area (CA). A CA is formed by two or more CIs
put together into fixed-length contiguous areas of storage. A VSAM data set is composed of
one or more CAs.

The control area is determined by the allocation for the data CONTROLINTERVALSIZE.
VSAM takes the smaller allocation size between the primary and the secondary units as the
CA size if the allocation is in TRACKS. Otherwise, the CA size is one cylinder regardless of
the allocation.

CI and CA splits occur as a result of data record insertions. If a record is to be inserted (in key
sequence) and there is insufficient free space in the CI, the CI is split. Approximately half of
the records in the CI are transferred to a free CI provided in the CA, and the record to be
inserted is placed in the original CI. If there are no free CIs in the CA and a record is to be
inserted, a CA split occurs. Half of the CIs are sent to the first available CA at end of the data
component. This movement creates free CIs in the original CA, then the record to be inserted
causes a CI split.

CI splits are a part of the cost of doing business with VSAM. The index component of a KSDS
must be able to index all of the data CIs in the data component of the KSDS. To determine
the number of CIs that must be indexed, take the CA size and multiply it by the number of
tracks per cylinder, then multiply that number by the number of CIs per track. This yields the
number of CIs that must be indexed per CA. If you do not have a large enough index CI size,
then all of the data CIs are not addressable, and premature CA splits occur. CA splits are
expensive, because of the number of physical I/Os that are required to accomplished the
split. We recommend that there is enough free space in the KSDS data set to prevent CA
splits between reorganizations.

For more information about index CI sizes, read 5.5.1, “Index CI sizes and record sizes” on
page 66.

For VSAM data set tuning general rules, see Appendix A.7.1, “VSAM data set tuning general
guidelines” on page 230.

For ESDS performance guidelines, see Appendix A.7.2, “ESDS performance guidelines” on
page 230.

For KSDS performance guidelines, see Appendix A.7.3, “KSDS performance guidelines” on
page 231.

5.21 Improve GSAM performance

There are three ways to improve the throughput of GSAM databases: using PROCOPT=LS
or GS and no DCB buffer information; coding the use of chained scheduling; or, using a
BUFNO greater than one.

Chapter 5. Database performance 123

If you are using a GSAM/BSAM database and not doing “random” reads (that is, not using
RSAs), then we recommend using a BUFNO greater than one.

If you code DCB=OPTCD=C, chained scheduling, or PROCOPT=GS or PROCOPT=LS, then
multiple buffers are used and IMS determines the number as follows:

� If TAPE, the number is a minimum of 3 but the greatest of 3, 5, 7, or 9 as long as the total
number of bytes is fewer than 64 000.

� If DASD, the number is the number of blocks on 2 tracks, plus 1 buffer, but with a maximum
of 10 buffers.

If none of the above, one buffer is used.

It is always advisable to specify a BUFNO parameter greater than 1. This causes GSAM to
use its multiple buffering I/O facility (BUFFIO). This is even better than chained scheduling. It
is a “QSAM-like” facility for use with BSAM. BUFNO > 1 causes IMS to use multiple buffers for
reads and writes. It also invokes a “read-ahead” function. If BUFNO=1, this function is not
used, even if PROCOPT=GS or LS is specified. If BUFNO is greater than one, it is used, even
with PROCOPT=G or PROCOPT=L. If BUFNO is not specified, the PROCOPT specification
determines if it is used.

5.22 When to reorganize

You should reorganize your database in the following circumstances:

� Database performance has deteriorated. This can happen either because segments in a
database record are stored across too many blocks or CIs, or because you are running out
of free space in your database.

� There are too many physical I/Os to DASD.

� The database structure has changed. For example, you should reorganize a HALDB
partition after changing its boundaries or high key.

� The (P)HDAM randomizer has changed.

� The HALDB Partitions Selection exit routine has changed.

� When the OSAM or VSAM data set goes into extents.

� When the data portion of a VSAM data set High-Used RBA keeps increasing.

� When the index portion of a VSAM data set keeps having CI and CA splits.

� When you start to run out of free space in the database.

� When roots start not to randomize to the home block in a (P)HDAM database, and start to
go to the beyond area or to overflow.

124 IMS Performance and Tuning Guide

Chapter 6. Transaction manager
performance

In this chapter, we:

� Examine the process from scheduling to first IMS call
� Consider the effect of certain program load and IMS transaction macro parameters
� Review IMS variable pool parameters on performance

6

© Copyright IBM Corp. 2006. All rights reserved. 125

6.1 Scheduling to first IMS call

Before deciding what performance data to gather, or what parameter to adjust, consider what
tasks are actually performed in scheduling your work:

1. Input message processing

The IMS control of the transaction begins with the transaction:

– Placed by VTAM in an IMS receive-any (RECANY) buffer

– Moved to a buffer acquired in the High I/O Pool (HIOP)

– Edited by MFS routines, IMS basic edit, or intersystem communication (ISC) edit
(depending on terminal type and bypass MFS option, as appropriate)

– Allocated a position on one of the message queue data sets

– Moved to the message queue pool and enqueued on the scheduler message block
(SMB)

The time that the message spends in these pools, in MFS processing, and being moved to
the message queue buffers affects response time. Individual transaction I/O to the format
library affects the message queue. A major factor in determining response time is whether
the respective pools are large enough for the current volume of transactions flowing into
input queuing. In particular, if the message queue pool is too small, overflow to the
message queue data sets occurs.

2. Message classification

This is the call to the z/OS WLM to obtain a WLM service classification for the incoming
message.

3. Input queuing

This is the time spent on the input queue or in the message queue buffers waiting for a
message region to become available. In a busy system, this time can become a major
portion of the response time. The pattern of programs scheduled into available regions
and the region occupancy percentage are important and should be closely monitored.

4. Scheduling

Because of class scheduling, regions can be idle while transactions are still on the queue.
The effects of scheduling parameters can be:

– Termination of scheduling as a result of PSB conflict or message class priorities
– Termination of scheduling as a result of intent conflict
– Extension of scheduling by I/Os to IMS.ACBLIB for intent lists, PSBs, or DMBs
– Pool space failures in either the PSB or DMB pools

5. Init PB call (activate the WLM delay monitoring environment)

Activate the WLM delay monitoring environment for the message when it is placed into the
dependent region. The WLM PB is initialized with the Service Classification and
transaction name, message arrival time, program execution start time (current time), user
ID, and so forth.

6. Program load and initialization

After scheduling, several processing events occur before the application program can
start:

– Content supervision for the dependent region
– Location of program libraries and directories to them
– Program fetch from the program library
– Program initialization up to the time of the first DL/I call to the message queue

126 IMS Performance and Tuning Guide

For monitoring, you can obtain the overall time for the above activities. The number of I/Os
should be checked periodically.

7. Message queue GU

This is the GU call to the message queue. It is chosen as a measuring point because the
event is recorded on the system log and is used as a starting point for iterations of
processing when more than one message is serviced at a single scheduling of the
program. Program control can now be considered effectively passed from IMS to the
application.

6.2 Program load options

The following load options can affect performance:

� COBOL options:

– LIBKEEP (causes the run-time library routines to remain in memory)
– RESIDENT (requests library routines be located dynamically at run time, not

link-edited)
– RENT (program is re-entrant)
– NODYNAM (no dynamic calls)

� DBLDL is a parameter (default 20, maximum 9999) in the EXEC statement of the
DFSMPR procedure that maintains a list of BLDL entries in the dependent region
containing the directory index for programs. It is maintained on a most active, most
recently used basis, and reduces the I/O to the program directory. Programs with entries in
this list have a lower schedule to first DL/I call elapsed time than infrequently used
programs.

For a region that is used to test new or changed programs, set the DBLDL parameter to 0,
ensuring that the most current version of the program is loaded for each execution.
Specifying the DOPT parameter disables quick reschedule.

� LLA is the recommended method for managing dynamically loaded program libraries. For
IMS application programs, it saves load modules in a data space, so that the modules can
be retrieved more efficiently than through DASD. LLA monitors the frequency with which
modules are accessed and readjusts its data space population to optimize the probability
of having a module in the data space when it is requested.

� LRR (Library Routine Retention) is an LE function that provides a performance
improvement for those applications or subsystems with the following attributes:

– The application or subsystem invokes programs that require Language Environment®.

– The application or subsystem is not Language Environment-conforming. That is,
Language Environment is not already initialized when the application or subsystem
invokes programs that require Language Environment.

– The application or subsystem, while running under the same task, repeatedly invokes
programs that require Language Environment.

– The application or subsystem is not using Language Environment preinitialization
services.

Chapter 6. Transaction manager performance 127

� Preload is commonly used for high activity programs that do not use a large amount of
virtual storage. You specify the names of the modules to be loaded in member DFSMPLxx
of IMS.PROCLIB. When the message processing region is initiated, you specify the suffix
xx as a parameter in the EXEC statement of the DFSMPR procedure. Preloaded
application programs are then branched to directly rather than through a FETCH program,
so preloaded programs should have a schedule to first DL/I call elapsed time that is less
than those that use the FETCH program. However, page fault serialization could cause
some application program elapsed time to increase.

Guidelines for the most effective implementation of program preload are:

– All commonly used PL/I, VS Pascal, or COBOL subroutines and application program
subroutines should be preloaded into each dependent region. If these subroutines are
reentrant, they should be put into the pageable link pack area (PLPA) so that only one
copy resides in real storage. Match subroutine usage with the region preload lists to
ensure that the appropriate modules are preloaded.

– Application programs are candidates for preload when they account for a high
percentage of a region’s transaction volume. Preload is most effective when the
transaction arrival rate for the preloaded program is adequate to keep the working set
of the program in real storage. If a system is constrained by real initializing z/OS and
IMS parameters for tuning storage contention, preload only subroutines and very high
volume application programs, because preloading can increase the paging rate. In
addition to deciding to preload them, consider class scheduling of high volume
transactions.

– Depending on the transaction arrival rate, it can be advantageous to preload in only
one or two regions and class schedule the transactions accordingly. The use of the
preload option for system performance improvements is highly dependent on the
availability of real storage and the arrival rate of the candidate transactions.

– Application program overlay is sometimes a viable alternative to preload. If an
all-purpose application program is coded to interrogate the input transaction data and
execute only a portion of the application program code for the transaction subcode,
program overlay I/O might be more efficient than loading or paging through the entire
program. Preload is a better alternative if the transaction arrival rate is sufficient to
maintain a working set in main storage.

� Program fetch:

– Order PGMLIB in descending frequency of use.

Restrictions:

Note these restrictions:

– Language Environment library routine retention is not supported to run on CICS.

– Language Environment library routine retention is not supported to run in an
XPLINK (Extra Performance Linkage) environment.

– Run-Time Library Services (RTLS) cannot be used with library routine retention.

Note: If the PSB name and the application program name are the same, this can trigger
abend U0921 or other unpredictable results.

Restriction: Do not preload application programs for batch regions executed using either
the DLIBATCH or DBBBATCH procedures. In these environments, preloading application
programs offers no advantage.

128 IMS Performance and Tuning Guide

– Use full-track blocking, because this minimizes Start I/O (SIO) operations and seek
times.

Note that Virtual fetch is no longer supported by the operating system.

� SRCH specifies whether the IMS control region searches the JPA and the LPA before the
STEPLIB or JOBLIB when loading a module. If the SRCH parameter is set to 1, then IMS
searches the JPA and the LPA. If it is set to 0, then IMS does a standard search.

If multiple IMS systems or IMS DL/I batch jobs execute concurrently in the same z/OS
LPAR, some virtual storage can be saved by referencing certain modules in LPA, so that
they are shared by all the jobs rather than each job having its own copy. This is feasible
only if all the IMS systems are at the same release and level.

If IMS modules are moved into LPA and the control region has a JOBLIB or STEPLIB DD
statement, we recommend that you set the SRCH parameter to 1. This can result in two
benefits: a save in storage and a save in I/Os and CPU time, because the modules do not
need to be loaded.

6.3 Transaction macro parameter options

The following transaction macro parameter options can affect performance:

� MAXRGN is a keyword on the TRANSACT macro and specifies the number of MPP
regions that can be scheduled for this transaction code. Use it when you want to prevent
one or more transactions from monopolizing all available regions.

� SEGNO is a keyword defined on the TRANSACT macro and sets the maximum number of
output message segments allowed for each input message processed by the scheduled
program. Use it to protect available message queue space from being used up by a
program output loop.

� PARLIM is a keyword defined on the TRANSACT macro and specifies the number of
messages that should be enqueued before another region is scheduled. This value is
multiplied by the number of regions already scheduled for this transaction. If the result is
fewer than the number of messages enqueued, another region is scheduled for the
transaction, unless MAXRGN is exceeded. If the region cannot be scheduled for internal
reasons (database intent), the next transaction within the class is scheduled.

� PROCLIM is a keyword defined on the TRANSACT macro and specifies the number of
messages that an application program can process in a single schedule. For
message-driven programs, PROCLIM is the limit for one transaction and uses the real
elapsed time, typically used because the terminal is set in response mode by the
transaction. The count parameter is ignored.

� PRTY is a keyword defined on the TRANSACT macro and has three values as follows:

– The first value (NORMAL) specifies the priority assigned to this transaction when the
number of input transactions enqueued and waiting to be processed is less than the
limit count value. The valid specification range is from 0 through 14 (the default is 1).

– The second value (LIMIT) specifies the priority to which this transaction is raised when
the number of input transactions enqueued and waiting to be processed is equal to or
greater than the limit count value. The valid specification range is from 0 through 14
(the default is 1).

Note: The text above is valid for a unshared queues environment. In a shared queues
environment, the successful consecutive GU count is used instead of the enqueue
count. Refer to 11.9.7, “FF scheduling differences” on page 209 for more information.

Chapter 6. Transaction manager performance 129

– The third value (LIMIT COUNT) specifies the number that, when compared to the
number of input transactions queued and waiting to be processed, determines whether
the normal or limit priority value is assigned to this transaction. The limit count value
can range from 1 through 65 535. The default is 65 535.

When the limit priority is used, and the priority is raised to the specified limit priority
value, the priority is not reduced to the normal priority until all messages enqueued for
this transaction code are processed. If you do not want the limit priority for this
transaction, code equal values for the normal and limit priorities, and a limit count of
65 535.

� SCHDTYP is a keyword defined on the APPLCTN macro, and describes programs that
operate in message processing regions, Fast Path message-driven program regions,
batch message processing regions, CCTL threads, or batch processing regions.

SCHDTYP can specify PARALLEL (this application program can be scheduled into more
than one message region or batch message region simultaneously) or SERIAL (default).

Given that altering SCHDTYP from SERIAL to PARALLEL (or reverse) requires a
MODBLKS system generation, consider defining all resources as SCHDTYP=PARALLEL.
You can then use MAXRGN to dynamically control parallel processing, where MAXRGN=1
for SERIAL processing required, or MAXRGN=x (where x is greater than one) for
PARALLEL processing, for greater workload flexibility, as required.

� WFI is a keyword on the TRANSACT macro and specifies that IMS allows the program to
remain in main storage after it has processed the available input messages.

The pseudo WFI (pseudo wait-for-input) option allows an MPP region to remain scheduled
until another input message appears. With pseudo WFI, unnecessary application program
termination and rescheduling can be eliminated:

– PWFI is usually more appropriate (it is a region parameter, WFI is a TRANSACT
option).

– Consider IMS class scheduling (but do not fall into the “single” class trap).

– Consider isolating high volume transactions to their own classes where possible (if not
practical, then use PARLIM/MAXRGN to minimize “thrashing”).

6.4 IMS parameters

This section describes some of the IMS execution parameters that have an effect on IMS
performance.

Note that during IMS initialization, the DFS1929i message displays the system parameters
that are actually in effect. The values are taken either from the IMS system generation, or
from the DFSPBxxx member or from the PARM specification in the JCL EXEC statement, but
they are the values that are actually used and can be useful information for problem
determination.

6.4.1 ARC parameter

ARC parameter specifies the number of online log data sets (OLDS) that must be filled and
closed before IMS starts automatic archiving. Set this parameter to the default value (01).

130 IMS Performance and Tuning Guide

6.4.2 BSIZ parameter

BSIZ parameter should be set properly to avoid unnecessary ECSA usage. Although the
BSIZ must be at least as large as the largest defined DEDB CI size, it should not be
oversized.

6.4.3 CPLOG parameter

CPLOG parameter specifies the IMS system checkpoint frequency. The value is the number
of the IMS log records written between system-generated checkpoints. The valid values are
from 1 000 to 16 000 000 (the default value is 500 000). Set the parameter to CPLOG=500K
(the default), then check the IMS system checkpoint frequently and compare it to the average
time that your system takes to fill up an OLDS, so that at least one system checkpoint is taken
on each OLDS.

If needed, change the CPLOG value dynamically using the /CHANGE CPLOG command and
modify the CPLOG parameter in the DFSPBxxx member of IMS.PROCLIB with the new
value.

6.4.4 DBBF parameter

The DBBF parameter on the DFSPBxx member of IMS.PROCLIB specifies the maximum
number of buffers in ECSA for Fast Path databases. If DBBF is not specified, then the
BFALLOC parameter of FPCTRL macro in IMS system generation is taken; if BFALLOC is not
specified either, the default IMS value is 10. The maximum value is 65535.

Within the DBCTL system, consider what the proper size is for the Fast Path DEDB buffer
pool, because it affects the system ECSA setting and you do not expect your system has an
ECSA shortage due to too big buffer pool allocation.

With IMS Version 8 and above, FPBUFF=LOCAL is introduced, which enhances the FDBR
initialization processing to GETMAIN the DEDB buffer pools in the FDBR private region rather
than ECSA. This relieves some ECSA constraint used by FDBR.

The following recommended formula was introduced in IMS V7 Performance Monitoring And
Tuning Update, SG24-6404:

DBBF = Number of open areas that have SDEP segments
+ Sum of NBA for all concurrently active FP programs
+ Largest OBA allocation for any of the concurrently active FP programs
(including any specified by CICS for DBCTL)
+ DBFX
+ Sum of all Fast Path buffers used by CICS(CNBA)

6.4.5 DBFP parameter

DBFP=0 means page fix and free DBBF buffers for each schedule and termination, DBFP=1
means page fix when allocated and used, so the number only increases. DBFP=n (2 to 3 600)
means the same as 1 but every n seconds page free buffers that are not needed by currently
scheduled applications.

If many IMS dependent regions are started and terminated with NBA and OBA specified in a
short time period, which would be the case with many BMPs, use DBFP=1. This helps reduce
the number of page fix and page free operations performed by z/OS.

Chapter 6. Transaction manager performance 131

When you use DBFP=1, the unfixed value on /DIS POOL FPDB drops to a small value, which
might not meet NBA for a new region, but it does not mean that new region cannot be started.
For example:

AVAIL = 11982 WRITING = 4 PGMUSE = 0 UNFIXED = 14

6.4.6 DBFX parameter

The DBFX parameter (default is 4) specifies an additional system buffer allocation, which is
page fixed at the start of the first Fast Path region. The DBFX allocation is needed because
DEDB writes are deferred until after sync point processing, to allow for asynchronous
processing where the DEDB updates are held until the associated log buffer is written.

DBFX specifies the number of buffers that are page fixed at control region initialization time.
That number does not change even if you use DBFP=1. If your DBFX value is small, you
could run into dependent regions having to wait for buffers in the output thread.

Actually, there is no generally recommended value you can use to determine if the DBFX
setting is correct. But /DIS POOL FPDB shows the active counts (WRITING). You also might
want to check the buffer waits in the Fast Path Resource Usage and Contention section of the
Performance Analysis report. If the buffer wait numbers are large or keep increasing, you
might consider increasing DBFX.

Example 6-1 shows a /DIS POOL FPDB command output.

Example 6-1 DIS POOL command output

?DIS POOL FPDB
DFS4445I CMD FROM MCS/E-MCS CONSOLE USERID=JOUKO3: DIS POOL FPDB IM1B
DFS4444I DISPLAY FROM ID=IM1B 987
 FPDB BUFFER POOL:
 AVAIL = 172 WRITING = 1 PGMUSE = 0 UNFIXED = 427
 POOLNAME CISIZE PBUF SBUF MAX CURRENT LK HITS VALID
 ITEMPOOL 04096 00200 00100 00500 00500 Y 052% 099%
 DISTPOOL 01024 00100 00025 00300 00125 Y 061% 100%
 WAREPOOL 00512 00020 00005 00030 00020 Y 099% 100%
 2006248/170713

Example 6-2 shows the IMS Performance Analyzer Fast Path Resource Usage and
Contention report.

Example 6-2 Fast Path Resource Usage and Contention report

IMS Performance Analyzer Page 1
 Fast Path Resource Usage and Contention - IM1B

 From 05Sep2006 15.01.34.20 To 05Sep2006 15.02.52.91 Elapsed= 0 Hrs 1 Mins 18.717.029 Secs
 ---DEDB Calls-- --- ADS I/O --- --VSO Activity- -Common Buffer- Contentions LGNR Stat Totl Tran
Transact Routing Reads Updates Reads Updates Reads Updates Usage Tot Tot CI/ Total #CI Sync Rate
 Code Code Count Avg Max Avg Max Avg Max Avg Max Avg Max Avg Max Avg Max Wts Stl UOW OBA Sec Comb Logd Fail /Sec
________ ________ _______ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ____ ____ ____ ____
TPCCN *SF=L 29 20 31 18 29 10 15 0 0 5 9 0 0 22 32 0 0 0 0 1 0 0 29 0
 *Unknown 1 28 28 27 27 14 14 14 14 9 9 1 1 29 29 0 0 0 0 0 0 0 0 0
 TPCCN 3011 22 32 21 31 11 20 11 19 5 12 1 1 23 36 0 0 0 0 121 0 0 0 38
TPCCN *Total* 3041 22 32 21 31 11 20 11 19 5 12 1 1 23 36 0 0 0 0 123 0 0 29 39
TPCCO *MPP 233 10 15 0 0 1 3 0 0 0 0 0 0 1 3 0 0 0 0 1 0 0 0 3
TPCCP TPCCP 2825 2 2 3 3 1 2 1 1 0 1 2 2 4 4 0 0 0 0 2 0 0 0 36
TPCCS *MPP 247 418 477 0 0 229 304 0 0 0 1 0 0 10 10 0 999 0 0 162 0 0 0 3

System Totals 6346 28 477 11 31 15 304 6 19 3 12 1 2 13 36 0 999 0 0 288 0 0 29 81

132 IMS Performance and Tuning Guide

6.4.7 Dynamic pools parameters

IMS defines the dynamic pools (the default limit per pool is 2 GB -1) as follows:

� AOIP: Automated operator (Type II) pool
� CESS: Communication external subsystem pool
� CIOP: Communication I/O pool
� EMHB: Expedited Message Handler buffer pool
� FPWP: Fast Path work pool
� HIOP: High I/O pool
� LUMP: LU 6.2 Manager private buffer pool
� LUMC: LU 6.2 Manager common buffer pool
� QBUF: Message queue buffer pool (in a shared queues environment)

The dynamic pool manager (DFSPOOL) manages storage by:

� Dynamically changing the size of each pool according to the system demands
� Each pool consisting of multiple blocks of fixed-length buffers
� Using fixed-length buffers to satisfy variable length requests
� Using bitmaps to manage storage

Each fixed pool consists of zero or more noncontiguous blocks of storage anchored off a pool
header. Each block is divided into a number of fixed-length buffers, the size and the number of
buffers that each block contains can vary from block to block within a pool. By obtaining new
blocks and releasing unused blocks, a pool can be expanded and contracted as needed
during the execution of IMS.

The 2 GB -1 default limit can be overridden by the DFSSPMxx member of IMS.PROCLIB
(parameters AOIP, CIOP, EMHB, FPWP, HIOP, LUMC, and LUMP), but not the upper
expansion limit of CESS pool, through:

FPL=poolname,(size,pbuf,sbuf,init),(size,pbuf,sbuf,init),(...)

Where the fields have the following explanations:

� size is the buffer size in bytes.
� pbuf is the primary allocation in buffers per block.
� sbuf is the secondary allocation in buffers per block.
� init can be Y or N and specifies whether to get the primary allocation during system

initialization.

For example, to replace buffer definitions for HIOP, you could use:

FPL=HIOP,(200,20,30,Y),(300,20,20,N),(400,10,20,N)
FPL=HIOP,(500,10,30,Y),(600,10,10,N),(700,10,20,N)
FPL=HIOP,(800,5,10,Y),(900,5,5,N)

Note that this pool definition extends over three lines. No continuation character is used in
column 72.

Chapter 6. Transaction manager performance 133

Table 6-1 shows where each of the DFSPOOL managed pools resides.

Table 6-1 DFSPOOL pool locations

The pool headers for each of the pools reside in ECSA storage. A table is created during
initialization that is used during buffer allocation. The table contains 256 two-byte entries. This
table also resides in ECSA.

The load module containing the default pool definitions is also loaded into ECSA. Note that 16
KBs of ECSA storage are used for the storage manager trace tables. The dynamic storage
management does not allow the CIOP or EMHB pools to be page fixed.

We recommend that you follow the steps on this checklist:

1. Maximize buffers in the primary blocks.

2. The best performance can be achieved from the storage manager by ensuring that all
buffers are obtained out of the non-compressible blocks. Therefore, we recommend that
you use the initial allocation option (INIT=Y) for persistent storage. Take samples at
periods of peak traffic and establish the size according to the statistics.

3. Minimize the number of blocks per buffer set.

4. Avoid the large system effects of scanning long chains of blocks; overallocation can cost
cycles and storage. We recommend that you define big blocks.

5. Spread the buffer set; distribution saves virtual storage.

6. A wide distribution of buffer sizes improves the chances of better fits of messages to
buffers and thereby avoids wasting virtual storage.

7. Do not overly constrain pools.

8. It is essential that the upper limit for a pool is not too low. If the storage manager makes a
request exceeding the limit, results are unpredictable. For the EMHB pool, a message is
returned to the terminal; for other pools, an abend of IMS might ensue.

9. Avoid oversized traffic.

10.Use of the oversized buffers is very costly; individual GETMAINs, inefficient matching of
large message length to the oversize buffer, and compression overheads can follow.

11.We recommend that you modify the definitions trying to keep the use of oversized buffers
at 0 value. This use is shown by the /DIS POOL command (the overflow value is not zero).

In summary, we have the following recommendations:

� Do not exaggerate the fine-tuning; requirements are mostly met by self-adjusting.
� Sample the data to create more efficient buffer set groups.

Acronym Location Usage

AOIP IMS CTL Extended Private Area AOI exit messages

FPWP Fast Path work buffers

HIOP TP buffers

LUMP LU 6.2 TP buffers

CIOP IMS CTL Private Area TP buffers

CESS ECSA External subsystem buffers

EMHB EMH buffers

LUMC LU 6.2 miscellaneous work areas

134 IMS Performance and Tuning Guide

� Avoid large system effects and pool fragmentation.

6.4.8 EMHL parameter

The EMHL control region execution parameter specifies the default size for Expedited
Message Handler buffers.

6.4.9 EXVR parameter

This parameter can be used to page fix the Queue Manager buffer pools (EXVR=1).
However, you should instead page fix those buffer pools either by:

� Utilizing the z/OS storage isolation function
� Using the DFSFIXxx member in PROCLIB, specifying POOLS=QBUF

6.4.10 Hash tables parameters: LHTS, NHTS, and UHTS

IMS uses certain control block pools for CNTs (LTERMs), VTCBs (VTAM nodes), and SPQBs
(users). The control blocks in these pools are not in any order; instead, when IMS needs to
locate one of these control blocks, it uses a hashing technique (not a sequential search of the
pool). Each pool has a hash table, and each hash table contains a user-specified number of
slots or anchor points. When a control block is added to the pool, its name is hashed so that a
number representing one of the hash table slots is generated. If that slot is not in use, the
address of the new control block is put in it. If the anchor point is already in use, a synonym is
created. Synonyms are chained together off the anchor point in ascending alphabetical order.

So for performance reasons, the control block synonym chains, on average, should not
contain more than seven blocks, to avoid a high cost sequential search of that synonym chain
whenever a control block is needed.

To calculate the number of required slots in each hash table (that is, the value of the hash
table parameters):

1. Take the maximum number of resources that can ever exist (conversations, LTERMs,
VTAM terminals, and users) and divide that number by seven.

2. Round up to the next higher 2 K block.

For example, if you have a network with up to 18 000 ETO terminals expected to be
concurrently logged on to IMS, then you need 18 000 VTCBs.

18000 / 7 = 2571
next higher 2k block = 4096

In this case, specify NHTS=4096. Set the same value for LHTS (for LTERMs) and also UHTS
(for users).

For all four parameters, the valid values are from 0 to 32767. The default value is 256, which is
appropriate for up to 1 792 resources (terminals). If you have significantly more than 1 792
terminals, set these parameters accordingly.

6.4.11 Logging parameters

The WADS parameter of the DFSPBxx member of IMS.PROCLIB specifies whether single or
dual WADS logging is going to be used.

Chapter 6. Transaction manager performance 135

The use of dual WADS should only be considered for production systems, because dual
writes are done to both copies in parallel. So, although no performance penalty is incurred if
both copies are on DASD of equivalent performance, dual writes use extra CPU cycles so it is
not free. It is highly unlikely that both IMS and WADS DASDs would fail at the same time.

All the WADS must be allocated on the same device type with the same allocation. Allocate
WADS on a dedicated device, preferably with good caching function (such as ESS devices).

The LGNR parameter of the DFSPBxx member of IMS.PROCLIB specifies the number of
DEDB buffer alterations that is to be held before an entire control interval is logged. Certain
events, such as full-function transaction sync point and MSC message logging, demand that
log records are written out immediately. These forced log writes are done to the WADS,
pending the WADS being written to the OLDS when the log buffer fills up. Thus, the WADS
contains the committed log records not yet written to the OLDS, and would be read by the
online system in the event of an emergency restart (for closing the OLDS).

The log buffer is considered to be a set of 2 KB pieces. At each forced write, IMS examines
the current log buffer, and any 2 KB piece that contains new log data is written to the WADS.
IMS selects a WADS track that does not contain previously committed pieces of this buffer
and writes the data (key 0) to the first 2 080-byte record on the WADS that comes under the
write head (or into the cache, when appropriate).

When the current OLDS buffer eventually fills up, it is scheduled to be written. Once the write
completes, the WADS tracks containing that block can be reused. With this technique, IMS
actually needs a track for each 2 KB piece of a buffer, plus one. For example, a 26 KB buffer
(OLDS BLKSIZE) needs 14 tracks for the WADS. This set of tracks is referred to as a track
group.

Because BSAM sometimes chains multiple buffer writes together, the WADS must have at
least two track groups. This is the minimum requirement but ensure that the size of the WADS
data set is defined large enough to have a track group for every log buffer. This is also the
maximum number of tracks that are ever going to be used, so there is no reason to overly
specify the WADS size.

6.4.12 LSO parameter

This parameter specifies the area of storage in which IMS allocates some control blocks,
buffers, and DL/I code. Using the LSO=S (meaning separate address space) option executes
in cross-memory mode, frees CSA storage, allows more space for some buffers as they are
relocated in ECSA, generally uses significantly less CPU, and experiences less virtual
storage constraint than the option LSO=Y.

When LSO=Y (the default), DL/I calls must switch z/OS TCBs (from the dependent region to
the control region), so this is a more expensive option. Although, it might also be a good
option for a system, which is almost exclusively a Fast Path or IMS test system, if the PSB
and DMB pools and associated work pools are small, and the system definition has a large
number of transactions and databases defined. In these cases, the amount of CSA storage
required for LSO=S might actually exceed the amount of CSA storage required for LSO=Y.

6.4.13 Message format buffer pool parameters

The FBP and FRE system execution parameters can be used to modify the definition of the
message format buffer pool (MFBP).

136 IMS Performance and Tuning Guide

6.4.14 OTHR parameter

This parameter specifies the number of concurrent output threads for the entire Fast Path
system. The maximum value is 255 or MAXPST, whichever is lower. OTHR=n causes n
service request blocks (SRBs) and extended SRBs (ESRBs) to be allocated during system
initialization. Set the PST parameter to a value that is at least as great as the maximum
number of dependent regions that are ever going to concurrently update a Fast Path
database.

6.4.15 Parameters for scheduling pools

There are several parameters in the DFSPSBxx member of the IMS.PROCLIB that can be
used to specify the size of the scheduling pools. These parameters are:

� PSB pools: PSB, CSAPSB, and DLIPSB parameters
� PSB work pool: PSBW parameter
� EPCB pool: EPCB parameter
� DMB pool: DMB parameter
� DMB work pool: DBWP parameter

6.4.16 PI parameters

PIINCR and PIMAX are the parameters in the DFSPBxxx member of IMS.PROCLIB that can
have an influence the IMS internal lock manager performance and IMS performance.

6.4.17 PRLD parameter

This parameter specifies the two-character suffix for the DFSMPLxx member in
IMS.PROCLIB, which identifies the modules to be preloaded in IMS regions. Any z/OS, IMS
or user-written module can be made resident in IMS regions by using the IMS module preload
function, which can improve the response time of transactions that frequently refer to the
preloaded modules although the better candidates to be preloaded are those modules which
are most frequently used and which load is most costly.

6.4.18 PST and MAXPST parameters

The PST parameter is used to specify the number of dependent region partition specification
table (PST) control blocks that IMS creates at initialization time. Although if more PSTs are
needed because a new dependent region starts, IMS dynamically allocates a new PST for
each new dependent region.

The MAXPST parameter (default 255, maximum 999) limits the number of dependent regions
that can be concurrently started. Set the PST parameter to a value at least as great as the
maximum number of dependent regions that are ever going to be concurrently started in your
IMS system. When specifying the MAXPST value, you need to establish a balance between:

� The number of dependent regions that are going to be necessary during peak time.

� The consumption of resources, such as PSB pools, database pools, or VSAM strings.
If you allow the operators to open any number of regions; these resources could be
overcommitted.

MAXPST also limits the value of the OTHR parameter. Do not specify a MAXPST value lower
than the number of output threads that are going to be needed.

Chapter 6. Transaction manager performance 137

6.4.19 QBUF parameter

This parameter specifies the number of message queue buffers (minimum 3 and maximum
9999) to be allocated to the queue.

In an unshared queues environment, ideally very few I/Os to the message queue pool data
sets should occur. If your system experiences frequent I/Os to the message queue pool data
sets, increase the QBUF value.

In a shared queues environment, the number you specify for the QBUF parameter is used as
the initial number of message queue buffers allocated and is dynamically expandable.

6.4.20 RECA parameter

This parameter specifies the number of receive-any buffers (1 to 500) and overrides what is
specified in the RECANY= parameter on the COMM macro. Monitor the number of RECANY
buffers that your system uses during the peak time and specify more buffers than necessary.

6.4.21 RES parameter

The RES parameter specifies whether (default RES=Y) the PSBs and DMBs defined as
RESIDENT in the system definition macros should be made resident during system
initialization. Reading an intent list from the ACBLIB requires an I/O and using RES=Y avoids
ACBLIB I/Os for the intent lists during program scheduling time.

If RES=Y is specified, then during IMS startup:

� All the intent lists are loaded.
� All the PSBs and DMBs defined as RESIDENT are loaded and made resident in storage.

Use the default value, RES=Y, in all production systems. In a test environment (or if you have
a storage constraint), then you might specify RES=N.

6.4.22 SAV parameter

This parameter specifies the number of dynamic save area sets (maximum 999) and save
area prefixes (SAPs) for use by communications ITASKs. When needed, IMS expands the
number of SAPs up to 10 times the SAV parameter value. If more SAPs are needed, the
communications ITASKs have to wait for SAPs to become available. This can result in
communication delays.

6.4.23 SRCH parameter

This parameter specifies whether the IMS control region searches the JPA and the LPA
before the STEPLIB or JOBLIB when loading a module. If the SRCH parameter is set to 1,
then IMS searches the JPA and the LPA. If it is set to 0, then IMS does a standard search.

If multiple IMS systems or IMS DL/I batch jobs are executing concurrently in the same z/OS
LPAR, some virtual storage can be saved by referencing certain modules in LPA, so that they
are shared by all the jobs rather than each job having its own copy. This is feasible only if all
the IMS systems are at the same release and level.

If IMS modules are moved into LPA and the control region has a JOBLIB or STEPLIB DD
statement, set the SRCH parameter to 1. This can result in two benefits: a save in storage
and a save in I/Os and CPU time, because the modules do not need to be loaded.

138 IMS Performance and Tuning Guide

6.4.24 VAUT parameter

Using the default VAUT=0 prevents the use of the VTAM authorized path facility, which
requires less CPU for processing SENDs and RECEIVEs, because VTAM performs less
validity checking of the VTAM control blocks. Specify VAUT=1 to enable this function.

6.4.25 VSPEC parameter

This parameter specifies which member (DFSVSMxx) in IMS.PROCLIB to use to define the
database buffer pools for OSAM and VSAM databases.

6.5 Data gathering

Certain performance data should be gathered on a regular basis,
to assist with later problem determination.

6.5.1 IMS Monitor

Run the following for the IMS transaction peak load period:

1. Issue IMS simple checkpoint (/CHE) and /DIS POOL ALL commands.
2. Run IMS Monitor, tracing all options, for an approximately 10 minute time period.
3. Immediately after stopping the IMS Monitor, take another IMS simple checkpoint (/CHE).

/CHE
/DIS POOL ALL
/TRA SET ON MON ALL
(trace interval, say 10 minutes)
/TRA SET OFF MON
/CHE

4. Issue another IMS simple checkpoint (/CHE).
5. Run the post processor program (DFSUTR20) and print the DL/I CALL SUMMARY

REPORT by specifying DLI in the //ANALYSIS DD * statement.

The distribution report is not required at this time, because it produces a detailed analysis of
the distribution of IWAIT times, elapsed times, and so on.

6.5.2 Recording the pool transaction

We recommend the following steps for recording the pool usage:

1. Record pool usage regularly (suggestion: use TCO to schedule the following command
every hour):

/DIS POOL DMBP PSBP DBWP HIOP FPDB

2. Record transaction usage regularly (suggestion: use TCO to schedule the following
commands every five minutes):

/DIS A
/DIS Q TRAN

3. Record Checkpoint statistics (no serialization, minimal overhead/log data):

/CHE STATISTICS (suggestion: use TCO to schedule every 60 minutes)

4. RMF and SMF:

Use IFASMFDP to dump RMF record types 70 through 79 as a minimum, archive to GDG.

Chapter 6. Transaction manager performance 139

6.5.3 Gathering the system monitoring data

We recommend the following steps to gather system monitoring data:

1. RMF Monitors I, II, and III can be used for gathering the system monitoring data:

� RMF Monitor I session provides data on system-wide resources, such as paging activity,
channel activity, device activity, SRM or WLM workload activity, and enqueue contention.
The data is used to determine how well the overall system performs. Run the RMF Monitor
I reports for 12 to 15 minutes to gather information about:

– Processor activity
– Channel activity
– Device activity - DASD
– Page/Swap data set activity
– Enqueue/Dequeue reports - detail
– Workload activity
– XCF activity

� RMF Monitor II session collects information about each address space in the system, as
well as paging, real storage, processor, and SRM or WLM activity. Monitor II is basically a
snapshot type of session, because it generates reports from a single sample of system
indicators. Run the RMF Monitor II reports for:

– Address space state data (ASD)
– Address space resource data (ARD)
– Address space SRM Data Paging reports (ASRM)
– Address space resource data by jobparm (ARDJ)
– Address space State Data (ASDJ)
– Address space SRM Data (ASRMJ)

� Run the COUPLING FACILITY ACTIVITY RMF Monitor III SYSRPTS reports for 10 to 15
minutes.

6.5.4 IMS log data

The IMS log contains other data that can be used in performance evaluation. This data can
be printed by using the log formatting print utility (DFSERA10), IMS Performance Analyzer
(IMS PA), or a user-written program that selects and formats the records of interest. The other
data and associated log records are:

� X'38' – Offset x’5C’ - Lockmax held at high watermark

� X'4001' – Control region CPU time (field CHKTMCTL)

� X'4001' – DLISAS address space CPU time (field CHKTIMEU=CTL + DLI elapsed time)

� X'41' – Lockmax for batch

� X'45xx' – IMS pool statistics:

– X'4501' – Dynamic database log statistics
– X'4502' – Queue buffer statistics
– X'4503' – Format buffer pool statistics
– X'4504' – Database buffer pool statistics
– X'4505' – Variable pool statistics
– X'4506' – Application scheduling statistics
– X'4507' – Logger statistics
– X'4508' – VSAM subpool statistics
– X'4509' – Program isolation statistics
– X'450A' – Latch statistics
– X'450B' – Selected dispatcher statistics

140 IMS Performance and Tuning Guide

– X'450C' – Storage pool statistics
– X'450D' – RECANY statistics
– X'450E' – Fixed pool statistics
– X'450F' – Dispatcher statistics
– X'4521' – IRLM
– X'4522' – IRLM

� X'56FA' – Transaction statistics

� X'67FA' – LOCK trace

� X'67FA' – Entry type x’CA’ - Program Isolation trace

� X'67FF' – Application program user abends. User abends U777 (deadlock) and U778
(ROLL call), for example, can be selected and reported by analyzing these records.

6.6 Page fixing

Highly used modules probably do not need to be fixed, because they are referenced
frequently enough to remain in central storage. However, some IMS and user modules can be
fixed to improve performance (to save I/O time and paging overhead) by specifying them in
the IEAFIXxx member of SYS1.PARMLIB, so that z/OS places them into FLPA.

Do not specify an excessively large fix list (because an increase in paging and swapping can
then be experienced by other system components), so just page fix the resource cleanup
modules:

� DFSMRCL0 (IMS RTM Routine)
� ASUH2RMT (VSPC RTM Routine if present)
� ERBMFRES (RMF RTM Routine)

Those modules are loaded and referenced for every task termination in the system, and they
can be found faster if they are in the z/OS fix list, which results in saving CPU cycles. Also,
page fix the following pool-related storage pools:

� OSAM database buffers and prefixes:

Using the IOBF control statement in the DFSVSMxx member of IMS.PROCLIB. To page
fix OSAM buffers and prefixes for a pool, you must set the fix1 and the fix2 parameters to
‘Y’:

IOBF=(length,number,Y,Y,caching option)

With z/Architecture, all OSAM database buffers are page fixed above the 2 GB line.

� VSAM I/O-related blocks:

Using the VSAMFIX control statement in the DFSVSMxx member of IMS.PROCLIB.
To page fix VSAM I/O-related blocks, you must indicate ‘(IOB)’:

VSAMFIX=(IOB)

� PSB pool in CSA (when implementing LSO=S option):

Using the POOLS control statement in the DFSFIXxx member of IMS.PROCLIB.

POOLS=DLMP

� PSB pool in DL/I SAS (when implementing LSO=S option):

Using the POOLS control statement in the DFSFIXxx member of IMS.PROCLIB.

POOLS=DPSB

� Queue manager buffer pool:

Chapter 6. Transaction manager performance 141

Using the POOLS control statement in the DFSFIXxx member of IMS.PROCLIB.

POOLS=QBUF

6.7 WLM

The job dispatching priority dictates in what sequence address spaces are to be dispatched
when they have work to do. Any job with a dispatching priority higher than IMS and its
dependent regions can cause interference. z/OS tasks, such as the Master Scheduler, JES,
VTAM, and GRS, normally run at higher dispatching priorities. RMF and GTF must run at a
higher dispatching priority than IMS to obtain the service necessary to collect the correct
data. Figure 6-1 shows a recommendation for the dispatching priorities between the different
IMS address spaces.

Figure 6-1 Suggested IMS dispatching priorities

Refer to Section 4.2, “CPU management” on page 50 for further details.

6.7.1 IRLM address space

The IMS Resource Lock Manager (IRLM) address space is required for N-way data sharing
and is optional for single-system program isolation usage. We recommend using the highest
possible dispatching priority of the IRLM address space.

Most use of the IRLM takes place under the dependent region TCBs, using cross-memory
services. However, the occasional task that executes within the IRLM address space itself
must have top priority within the IMS system (for example, deadlock detection). IRLM must
also be higher than any other z/OS client address space, such as VTAM. If this higher
dispatching priority is not specified, response times are lengthened.

6.7.2 DBRC address space

Fix the dispatching priority of the DBRC address space at least one level above those of the
IMS DLS and control region. IMS uses DBRC to process the database opens, first calls to the

Priority Address Space

n IRLM
n - 1 VTAM, GTF, RMF, GRS
n - 2 DBRC, CQS
n - 3 IMS CTL
n - 4 DLS
n - 5 (or less) IMS MPP1
n - 6 " " IMS MPP2
n - 7 " " "
n - 8 " " IMS MPPn
n - 9 " " BMP batch

142 IMS Performance and Tuning Guide

database, EOV on a database, the database close, and all log data set changes. The higher
dispatching priority ensures that DBRC processing occurs when necessary.

6.7.3 CQS address space

If you run WLM in Goal mode, you should have the same service class as IRLM and the IMS
control region.

6.7.4 IMS control region

If the IMS schedule NOT-IWAIT time is greater than 4 ms and the total system paging rate is
low (fewer than 12 pages per second and a page resolution time of less than 100 ms), higher
priority tasks might be executing in the system and using the CPU cycles needed by IMS.
Determine whether these higher priority tasks must run at their present dispatching priority.
Lowering their DPRTY below that of IMS, if possible, gives the CPU resource back to IMS.

Log Archive (DFSUARC0) jobs should have a dispatching priority that is at least as high as
the IMS control region or even higher. It does not hurt the system, because the archive utility
consumes very little CPU (it is an I/O bound program), but it provides processor cycles to the
utility whenever it needs them.

6.7.5 IMS DLS address space

Fix the dispatching priority of the DLS address space at one level below that of the IMS
control region. The reason is that the DLS address space processes the open, close, and
allocation of all full-function databases. Fast Path databases are owned by the control region.

Additionally, the scheduling of transactions is performed in the DLS address space if it loads
the application PSB.

6.7.6 IMS dependent regions

Specifying a unique dispatching priority ensures that a dependent region is always in the
same position on the z/OS dispatcher sequence queue relative to the IMS control regions and
dependent regions.

Without unique dispatching priorities, all dependent regions can have the same dispatching
priority assigned to them. Therefore, the message regions can be dispatched in different
priority sequences each time they are started. If the dependent regions are placed in either
the mean-time-to-wait group or the rotate priority group, they can be at different relative
dispatching priorities at any given time during their execution. The rotate type of dispatching
is usually adequate for dependent regions that process the same scheduling classes. If the
scheduling of dependent regions is by class according to type of work, a unique dispatching
priority is a better alternative.

Not only is it important that the IMS control region get CPU service when needed, but as a
result of parallel DL/I, the same is true for the dependent regions. The DLS address space
requires a dispatching priority just below that of the control region. If other tasks on the z/OS
dispatcher sequence queue come between the IMS control address spaces and the
dependent regions, the intervening tasks receive service before the dependent regions.

Therefore, raising the DPRTY of the dependent regions higher than that of the intervening
jobs might improve transaction response time.

Chapter 6. Transaction manager performance 143

The message processing regions need a higher dispatching priority than the BMPs, but the
BMPs must immediately follow them, because the BMPs contend for the same IMS software
resources (buffer handler latches and program isolation enqueues) as the message regions.
A BMP could be interrupted while holding an IMS software resource and, therefore, suspend
either the control address spaces or the MPP's execution. The address spaces needing the
resource wait until the BMP is redispatched and the resource is released. Tasks intervening
between MPPs and BMPs could cause dependent-region elapsed time to increase, even
though the dependent regions are getting adequate CPU service.

The number of message-processing regions has a direct effect on transaction response time.
If too few regions are available, the transactions can remain on the input queue for a long
period of time. Conversely, if too many regions are processing the same application workload,
there can be contention for the database records (PI enqueues).

Having too many message-processing regions can increase CPU consumption by reducing
the number of transactions per scheduling. This in turn causes more schedules and program
loads. Too many regions also demand more storage, both for the regions themselves and for
pools, such as the IMS PSB pool and ENQ/DEQ pool. They also potentially increase
contention among regions for IMS buffer pools, IMS data sets, enqueued resources (PI),
internal IMS latches, and program load libraries.

In environments with fewer transaction types, higher levels of occupancy can be tolerated,
because the application programs might be able to remain in the regions and process multiple
transactions without causing other transactions to queue.

6.8 IMS variable pool considerations

Table 6-2 shows the names of the main buffer pools according to where they are referenced.

Table 6-2 Variable pools

PSB pools (DPSB and PSBP)
If LSO=Y (default) is specified in the DFSPBxxx member of IMS.PROCLIB,
then a single PSBP pool is allocated in ECSA storage.

Alternatively, if LSO=S is specified in the DFSPBxxx member of IMS.PROCLIB,
the PSB pool is divided in two pools:

� PSBP containing TP PCBs and Fast Path PCBs (about 10% to 20% of the old PSB pool)
and is allocated in ECSA storage.

POOL name System
definition name

Procedure name Fix list name /DISPLAY POOL
name

Location

DMB DMB DMB DLDP DMBP EPVT(DLISAS)

PSB PSB PSB DLMP PSBP ECSA

CSAPSB CSAPSB CSAPSB DLMP PSBP ECSA

DLIPSB DLIPSB DLIPSB DPSB PSBP EPVT(DLISAS)

DB work pool DBWP DBWP DBWP DBWP EPVT(DLISAS)

PSB work pool PSBW PSBW PSBW PSBW ECSA

EPCB EPCB EPCB EPCB EPCB ECSA

144 IMS Performance and Tuning Guide

� DPSB containing full function PCBs (about 80% to 90% of the old PSB pool)
and is allocated in the DL/I SAS extended private area.

LSO=S frees CSA storage, allows more space for some buffers (because they are relocated
in ECSA), and generally uses significantly less CPU than those using LSO=Y.

Table 6-3 summarizes where IMS allocates each area of storage depending on the value
specified in the LSO parameter.

Table 6-3 Storage allocation

DMB pool (DMBP)
If the IMS Monitor is activated after all databases are opened, any IWAITs for DMB indicate
either that the DMB pool size is too small or that a /DBR was issued earlier for the database
and it is now being referenced again.

Each time a DMB has to be loaded into the pool and the necessary free space is unavailable,
one or more databases not currently being referenced must be closed and their DMBs
deleted to make pool space for the new DMBs being referenced.

After the new DMB is loaded into the pool, the database must be opened. Opening and
closing databases suspends either the IMS control region or the DL/I SAS, depending on the
specification of the LSO= option, and increases DL/I call elapsed time.

In the case of a DMB pool, page faulting is preferable to database open and close, so make
the DMB pool big enough so that the open and close process does not take place due to DMB
pool shortages.

We recommend that you make the DMBs for all databases resident (which IMS then loads
into a pool called DFSDMBRS). If all the DMBs are made resident, the inactive DMBs can be
allowed to page out without significantly affecting the active DMBs, but paging them back into
storage can suspend processing in the control region or the DL/I SAS. We also recommend
that you page fix the resident DMBs by means of specifying the DFSDMBRS module name in
the z/OS fix list.

LSO=Y
Fast Path No Fast Path

LSO=S
Fast Path No Fast Path

Fast Path buffers ECSA storage ECSA storage

VSAM buffers IMS control region private area DL/I SAS extended private area

OSAM buffers

Control blocksa

a. With LSO=Y, VSAM data set control blocks that are created when data sets are opened are allocated in CSA
storage.

DL/I SAS private storage both above
and below 16 MB line

DL/I code

Intent list ECSA storage

Log buffers ECSA storage IMS control
region private
areaENQ/DEQ pool ECSA storage DL/I SAS

extended private
area

PSB pool Single PSB pool in ECSA storage
(100%)

PSBP in ECSA (10%-20%)
DPSB in DL/I SAS extended private
area (80%-90%)

Chapter 6. Transaction manager performance 145

If you make all DMBs resident in the IMS system definition, leave a DMB pool size of at least
12 KB. This size allows a DMB that is not specified as resident in the IMS system definition to
be loaded. You should monitor this pool regularly to determine whether nonresident DMBs
exist.

If online change is used for the system, the DMB pool must be large enough to contain all of
the resident DMBs that are to be changed by online change. The resident DMBs that are
changed by online change are closed, and the new DMB is loaded into the DMB pool when
referenced again. It is not reloaded into the resident DMB storage DFSDMBRS.

Monitor the usage of the DMB pool by the following actions:

� Be sure that the full IMS system has been running long enough so that all the databases
are open.

� Use the /DIS POOL DMBP command to display the maximum pool occupancy.

� Repeat the process regularly.

The Variable Pool Statistics section of IMS Performance Analyzer Internal Resource Usage
report reports the actual amounts of the DMBP pool used.

In summary, we have the following recommendations:

� Make all of the DMBs resident.
� Allow enough space in the DMB pool for online changed DMBs.
� Do not underallocate the DMB pool.

Database work area pool (DBWP)
This pool is used as a work area for segments being deleted and by other calls. A reasonable
size for this pool can be calculated using 2 KB for each PST to be allocated by the control
region. After the IMS system is up and executing for a while, use the highest allocated size for
this pool to determine the new size. Allocate an additional 4 KB above this size.

PSB work pool statistics (PSBW)
All work areas required for the PSBs are allocated from this pool. No I/O ever occurs for this
pool. The size of the pool is listed as Size and the maximum amount of space used is listed as
High. Any requests for space that cannot be satisfied from this pool are reported in the IMS
Monitor reports.

Make the PSBW pool large enough to contain the largest unit (PSB or PSBW) in the system,
times the number of active dependent regions, plus 20% for possible fragmentation. For
example, if the largest PSB work area in the system is 30 000 bytes and 50 dependent
regions are active, the PSBW pool minimum size is:

1.2 x (30,000 x 50) = 1,800,000 = 1.8 MB

Another way to calculate the appropriate size of the PSBW pool is to scan the ACBGEN
output, which shows the largest PSB work area. If the largest PSB work area found on the
ACBGEN is for an active online PSB, this size can be used for the calculation of the size of
the PSBW pool.

The Variable Pool Statistics section of IMS Performance Analyzer Internal Resource Usage
report shows the actual amounts of the PSBW pool used.

EPCB pool statistics (EPCB)
When any PSB containing Fast Path PCBs is scheduled, extended PCBs are built in the
EPCB pool.

146 IMS Performance and Tuning Guide

The formula for calculating the size of the EPCB pool can be found in Chapter 3 in the section
“BUFPOOLS Macro” in IMS Version 9 Installation Volume 2: System Definition and Tailoring,
GC18-7823:

EPCB = (number of TP-PCBs * 28) +
(number of MSDBs * 76) +
(number of DEDB SENSEGs * 124) + 132

The actual EPCB space requirements for each PSB are listed by the ACBGEN utility. If the
EPCB pool is too small, dependent region scheduling failures (internal conflicts) occur. The
Variable Pool Statistics section of IMS Performance Analyzer Internal Resource Usage report
shows the actual amounts of the EPCB pool used.

6.8.1 Relationship with scheduling
The dependent region might run into scheduling failures if the pool size is small. Five pools
are associated with scheduling:

� PSB pools (PSBP and DPSB)
� PSB work pool
� EPCB pool
� DMB pool
� DMB work pool

I/O activity to IMS.ACBLIB or pool-space failures during application program scheduling
indicate the need to tune these pools.

A pool-space failure in any of these pools indicates that a request for space cannot be
satisfied from unallocated space (for PSBs, PSB work areas, or DMBs needed by scheduled
application programs). Thus, the pool that caused the pool space failure is too small to handle
the concurrent dependent region activity and needs to be increased.

We recommend that you apply the following rule when determining the starting size of these
pools: each pool should be large enough to contain the largest unit (PSB or PSBW) in the
system, times the number of active dependent regions, plus 20% for possible fragmentation.

For example, if the largest PSB work area in the system is 30 000 bytes and 50 dependent
regions are active, the PSBW pool minimum size is:

1.2 x (30,000 x 50) = 1,800,000 = 1.8 MB

This still might not be enough because of fragmentation. Therefore, we recommend that you
monitor these pools using the /DIS POOL ALL command or IMS Performance Analyzer to
determine whether the pool size is adequate. The Variable Pool Statistics section of IMS
Performance Analyzer Internal Resource Usage report can be used for monitoring the
scheduling pools. If the monitoring of the pools shows that the maximum number of bytes
used in the pool is well below the allocated storage size, we recommend that you reduce the
size of the pool to approximately 8 KB above the maximum number of bytes used in the pool.

The exceptions are the PSB and DPSB pools, which attempt to use all available storage. We
recommend that you execute the IMS Performance Analyzer Internal Resource Usage report
with a log data set that contains two checkpoints taken during the peak time in order to
determine whether some of the pools are nearing their maximum size.

IMS.ACBLIB I/O activity can occur to the PSB and DMB pools if they are not large enough to
hold all of the PSBs, nonresident intent lists, and DMBs referenced by the system.
IMS.ACBLIB I/Os are undesirable for DMBs, except at IMS startup or following /DBR and /STA
database commands.

Chapter 6. Transaction manager performance 147

We recommend that you make the pools large enough to minimize the number of I/Os, yet at
the same time small enough to avoid a substantial increase of the constraints on real storage.
IMS Block Mover is a serial resource; therefore, other dependent regions might have to wait to
schedule when the block mover is busy loading the application's control blocks or when
dynamic allocation is holding a block mover latch.

An acceptable number of IMS.ACBLIB I/Os is less than one per scheduling. Each I/O
increases the application program schedule time not only for this application but for others as
well.

If the number of I/Os per transaction to IMS.ACBLIB is more than one, this indicates a
possible inadequate allocation of the PSB or DMB pool (the PSBW, EPCB, or DMBW pools
never experience I/O activity).

The potential exists for a minimum of three IMS.ACBLIB I/Os per scheduling:

� One I/O for the intent list (INT=)
� One I/O for the PSB (PSB=)
� One I/O for the DMB (DMB=)

The number of I/Os for each PSB or DMB depends on the size of each and the block size of
IMS.ACBLIB. We recommend that you make the ACBLIB block size 32 KB.

148 IMS Performance and Tuning Guide

Chapter 7. Performance considerations for
DBCTL

This chapter discusses some items specific to DBCTL with references to other sections in this
book containing information about specific parameters.

This chapter describes the following topics:

� DFSPZPxx
� Scheduling
� IMS (DBCTL) startup parameters
� Parallel Sysplex considerations

7

© Copyright IBM Corp. 2006. All rights reserved. 149

7.1 DBCTL performance considerations

Information related to general database performance is contained in Figure 5 on page 53 and
is common to both IMS DB/TM and DBCTL environments. However, there are specific
considerations for DBCTL, which are covered here. The module is DFSPZPxx. It is
assembled and linked by the user and then used when the CCTL connects to DBCTL.

7.2 DFSPZPxx

DFSPZPxx module, referred to as the DRA startup table, is assembled and linked by the user
into a library accessible to the CCTL region, which is typically CICS. It contains specific
parameters, which affect the resources in DBCTL. The following parameters can have a
significant effect on performance:

� FPBUF=

FPBUF specifies the number of Fast Path buffers that are allocated to each DBCTL thread
from this CCTL. The MINTHRD and MAXTHRD values therefore must be considered as
well as the CNBA value. This value multiplied by the MINTHRD value is the number of
buffers needed in the IMS DBBF pool and must be within the CNBA value. This value is
similar to the NBA value specified for IMS dependent regions.

� FPBOF=

FPBOF is the number of overflow buffers which can be used by each thread. This is similar
to the OBA value specified for IMS dependent regions.

� CNBA=

DBCTL users need to consider how many threads (PSTs) should be defined in DFSPZPxx
(DRA table) for the CICS connections. This DRA table is defined in IMS but used by CICS
AORs.

CICS/DBCTL users might end up reaching the MAXTASKs defined in CICS side, so how
can you determine the minimum number of threads defined in IMS to support the
expected workload? Use the following formula:

Minimum thread numbers = Elapsed execution time(millisecond) * Transaction per second
/ 1000

In this formula, Elapsed execution time(millisecond) can be obtained from either the IMS
Monitor report or IMS Performance Analyzer. Because you never want to fully use all
threads, allocate at lease 25% more threads.

For example, if the elapsed execution time is about 60 milliseconds, and the workload for
this IMS is 500 transactions per second, the formula gives the following result:

60*500 / 1000 / 75% = 40

So, we need 40 threads for that IMS to support the workload of 500 transactions per
second in this case. Use IMS Performance Analyzer or IMS Monitor report constantly to
monitor if the region occupancy is under 75% or the workload is greater than your
expectation.

� MINTHRD=

MINTHRD specifies the number of thread TCBs to be allocated when this CCTL connects
to DBCTL. The PST= value in IMS should be large enough to accommodate this value
times the number of CCTLs plus any BMPs.

� MAXTHRD=

150 IMS Performance and Tuning Guide

MAXTHRD is the maximum number of thread TCBs which can be created by this CCTL.
Remember that this value is for each CCTL and relates to the PST and MAXPST values in
IMS.

7.3 Scheduling

CCTL (CICS) applications issue schedule requests within the application when there is a
need to access IMS resources. Because this is done from within the application, there are no
scheduling options, such as PWFI with IMS TM. All requests to schedule a PSB are handled
as separate new requests. All of the same pool considerations for the variable pools apply to
DBCTL and are discussed in 6.8, “IMS variable pool considerations” on page 144 and
therefore are not duplicated here. For reference, the list of pools to be considered are:

� CSAPSB
� DLIPSB
� PSBW
� DMB
� DMBW, which is not actually allocated at schedule but is a variable pool
� EPCB

PSBs used by CCTL must be defined to DBCTL. These are defined by the use of the
APPLCTN macro. Unless there is some specific reason to do otherwise, you should always
specify SCHDTYP=PARALLEL to allow parallel scheduling of these PSBs.

7.4 IMS startup parameters for DBCTL

The following DFSPBxxx parameters apply to DBCTL and can have an impact on
performance. In some cases, a brief explanation is given or a reference to the parameter
description is shown. The parameters are:

� ARC=

The primary reason that we list the ARC parameter as performance-related is because
you need to make sure that you archive as soon as possible to avoid any delays due to
unavailable OLDS.

� BSIZ=

BSIZ must accommodate your largest DEDB CI size but should not be oversized, because
it can waste a significant amount of virtual and fixed storage depending upon the DBBF
and DBFX settings.

� CPLOG=

Set CPLOG large enough to avoid excessive IMS checkpoints. Every 10 to 20 minutes
should be a reasonable number.

� CSAPSB=

See 6.8, “IMS variable pool considerations” on page 144.

� DBBF=

See 6.4, “IMS parameters” on page 130.

� DBFP=

See 6.4, “IMS parameters” on page 130.

� DBFX=

Chapter 7. Performance considerations for DBCTL 151

See 6.4, “IMS parameters” on page 130.

� DBWP=

See 6.8, “IMS variable pool considerations” on page 144.

� DLIPSB=

See 6.8, “IMS variable pool considerations” on page 144.

� DMB=

See 6.8, “IMS variable pool considerations” on page 144.

� EPCB=

See 6.8, “IMS variable pool considerations” on page 144.

� FIX=

The FIX parameter specifies the suffix for the DFSFIXxx and DFSDRFxx IMS.PROCLIB
members, where you can specify page fixing and DREF storage options. The most
important option in DFSFIXxx is typically the EPST option if Fast Path is used.

� LGNR=

See 6.4, “IMS parameters” on page 130.

� MAXPST=

MAXPST must accommodate the MAXTHRD value from all CCTLs that connect to this
DBCTL plus any BMP regions.

� OTHR=

See 6.4, “IMS parameters” on page 130.

� PIINCR=

See 6.4, “IMS parameters” on page 130.

� PIMAX=

See 6.4, “IMS parameters” on page 130.

� PSBW=

See 6.8, “IMS variable pool considerations” on page 144.

� PST=

The PST parameter value should be large enough to handle the MINTHRD from all
CCTLs plus any BMPs. It is usually best to make it even larger to accommodate changes
in MINTHRD, concurrent BMPs, or the number of connected CCTLs.

� RES=

Specify RES=Y to make the intent list and any PSBs that were defined at system definition
resident in storage at initialization.

� SPM=

SPM is used to override the IMS default fixed storage pool manager specifications. In a
DBCTL environment, there should be no need to override the defaults.

� VSPEC=

The VSPEC parameter specifies the suffix of member DFSVSMxx, which contains many
important performance-related specifications. See Figure 5 on page 53 for additional
information about database buffer pools.

� WADS=

152 IMS Performance and Tuning Guide

While this is mainly an availability parameter, note that IMS writes concurrently to each
WADS but waits for both to complete before posting any waiting tasks, so it is important to
make sure if using DUAL WADS that both are on the best performing DASD.

7.5 Parallel Sysplex

Parallel Sysplex considerations are discussed in Chapter 11, “IMS Parallel Sysplex
considerations” on page 201. Everything, except for the part about shared queues, applies to
DBCTL.

Chapter 7. Performance considerations for DBCTL 153

154 IMS Performance and Tuning Guide

Chapter 8. System considerations

This chapter discusses some of the tasks that are general, yet critical to the functioning of
IMS. Although we can debate whether these functions are actually a component of IMS
Transaction Manager (IMS/TM) or IMS Database Manager (IMS/DM), these are really system
functions that support both IMS/TM and IMS/DM.

This chapter discusses the following:

� The IMS logger and its components

� IMS Database Recovery Control Facility (DBRC)

� Resource Access Security (RAS) using Resource Access Control Facility (RACF)

� Batch and utility performance

8

© Copyright IBM Corp. 2006. All rights reserved. 155

8.1 The IMS logger

Logging in IMS is performed by the IMS control region under the control of a task control
block (TCB) called the logger TCB. The purpose of the IMS logger is to provide the following:

� Record the status of the system through periodic checkpoints
� Record the status of changed database segments
� Cater for recoverability and integrity of IMS data
� Provide an audit trail
� Provide performance statistics

Every task in IMS must log. This implies that each log record has to be uniquely identified and
information contained in the log record must pertain to a specific unit-of-work. It is this
unit-of-work, together with the recovery token unique to each log record, that makes the
logger exceptionally powerful by allowing IMS to cater for the integrity and recoverability of all
work under its control.

Internally, IMS consists of two logging functions: the logical logger and the physical logger.
Naturally, both these log functions have their own TCBs. The responsibility of the logical
logger is to ensure that all log requests are moved to the log buffers. The responsibility of the
physical logger is to ensure that the log buffers are written to disk.

In order to log data, IMS makes use of two types of logs: the write ahead data set (WADS)
and the online log data set (OLDS). The WADS is used to externalize log records that IMS
considers critical. The WADS is used in a wraparound fashion, whilst the OLDS is used in a
round-robin fashion. IMS ensures that data written to the WADS is transferred to the OLDS.
The write to the OLDS is done either when a track worth of buffers is filled or a timer pops
every second, whichever occurs first. As the OLDS fills up, IMS schedules an archive utility to
archive the OLDS to the system log data set (SLDS) and the recovery log data set (RLDS).
Once archived, the OLDS can be reused.

IMS employs WAIT WRITES and CHECK WRITES to externalize log records to the WADS. A
WAIT WRITE is a synchronous request to write log records and a CHECK WRITE is an
asynchronous event to write log records.

Now we look at some of the log records produced and how IMS formats log records.
Figure 8-1 on page 157 provides a view on the elements that make up the log record. The
elements of the log record are as follows:

� The “LL” field shows the size of the log record.
� The “ZZ” field which is generally binary zeroes.
� The record identifier indicates the record type (1 byte).

Codes above x'80' are considered by IMS to be user log records, although IMS can write
the x'99' record in the Change Data Capture Exit.

� A subrecord identifier indicates the subrecord type (1byte).
� The record content as mapped out by the relevant DSECT.
� A store-clock (STCK) value indicates the time the record was cut.
� The log sequence number (LSN), which is unique to each record.

156 IMS Performance and Tuning Guide

Figure 8-1 Log record structure

8.1.1 Logging considerations

Due to the enormous amount of logging that a large IMS system can perform, and the effect it
can have on the performance of your system, the following considerations can help ensure
optimum performance of your IMS system:

� When running on a CPU with 64-bit support (z/Architecture), the log buffers are page fixed
in real storage above the 2 GB line. This feature allows you to specify the maximum
possible amount of log buffers, which is 9999, without incurring a storage constraint. In
order to take advantage of this enhancement, the OLDS block size is required to be a
multiple of 4 096 (without exceeding half track value). We recommend a block size of
24 576, because it still retains half-track blocking. In the past, a block size of 26 624 was
recommended and this can still be used, but you are not able to make use of storage
above the line. Evaluate the usage of your log buffers and determine whether you need to
allocate maximum buffers above the line. If you increase your log buffers, pay particular
attention to the size of your WADS, because the size of the WADS must be increased.

� Ensure the correct number of OLDS buffers are defined in DFSVSMxx. The current
maximum limit is 9 999 buffers. Example 8-1 shows the DFSVSMxx statements that need
to be defined. It is also good practice to define more OLDS dynamically. This can only be
achieved if you specify the OLDS in DFSVSMxx and set up the dynamic allocation
members accordingly.

Example 8-1 Sample OLDS and WADS definition in DFSVSMxx

OLDSDEF OLDS=(00,01,02,03,04,05,06,07,08,09,10),BUFNO=30,MODE=DUAL
WADSDEF WADS=(0,1,2,3)

Log record format

LL ZZ RECORD RECORD RECORD STCK LSN
2 Bytes 2 Bytes TYPE SUBTYPE CONTENT 8 Bytes 8 Bytes

1 Byte 1 Byte

LL = Variable length field

ZZ = Usually binary zeroes

STCK = Binary value for hardware clock

LSN = Log sequence number

Record Type and subtype show type of log record.

Chapter 8. System considerations 157

� Dual WADS need to be defined to ensure resilience is in effect. However, today’s hardware
and operating systems have built-in increased throughput and resilience. The decision to
use dual WADS is generally based on your infrastructure and business requirements,
which also applies to running dual OLDS.

� Allocation of OLDS and WADS must be made on separate controllers across your DASD
infrastructure. Generally, the WADS must be placed on a controller with good caching
functions. The WADS generally tends to show high I/O rates and therefore optimum and
consistent response times must be achieved.

8.2 DBRC

DBRC forms an integral part of IMS. IMS relies on DBRC to record and manage
recovery-related information about all aspects of IMS. DBRC keeps this information in a set of
VSAM data sets that are collectively called the Recovery Control (RECON) data set. DBRC
also provides information to IMS about how to proceed for certain IMS actions. DBRC
specifically does the following:

� Helps you ensure IMS system and database integrity by recording and managing
information associated with the logging process.

� Assists IMS in the restart process by notifying IMS which logs to use for restart.

� Assists IMS to allow or prevent access to databases in data-sharing environments by
recording and managing database authorization information.

� Facilitates database and log recovery by:

– Controlling the use and integrity of the information in the logs.

– Recording and maintaining information about the databases and logs in the RECON
data set.

– Generating and verifying the Job Control Language (JCL) for various IMS utility
programs.

� Supports Extended Recovery Facility (XRF) by identifying (in the RECON data set) if the
subsystem is XRF capable.

� Supports Remote Site Recovery (RSR) by containing the RSR complex definition in the
RECON data set and providing other services associated with controlling RSR.

� Supports IMSplexes by notifying all DBRCs in the same IMSplex when one of the DBRCs
performs a RECON data set reconfiguration.

� Provides enhanced database function support for:

– HALDB
– Unrecoverable databases
– Concurrent Image Copy
– Image Copy 2
– Fast Path VSO options
– Online reorganization

Figure 8-2 on page 159 provides us with a view of the various record types that exist in
DBRC.

158 IMS Performance and Tuning Guide

Figure 8-2 DBRC record types within RECON

8.2.1 DBRC performance considerations

There are a number of performance considerations with regard to DBRC and the
management of the RECON data sets. The IMS Version 9 Database Recovery Control Guide
and Reference, SC18-7818, provides detailed information about this topic. We highlight some
of the major performance considerations with DBRC.

8.2.2 Defining the RECON data sets

All information pertaining to DBRC is kept on a VSAM key-sequenced data set (KSDS).
DBRC uses two RECON data sets to increase availability and recoverability. They contain
identical information. The data sets are identified by the DD names, RECON1 and RECON2.
We strongly recommend that you define a third RECON data set (RECON3) to be a spare
data set. This spare data set is empty until an error occurs on one of the two active RECON
data sets, or you issue the CHANGE.RECON REPLACE(xxx) command. Then, DBRC copies the
good RECON to the spare data set.

Naturally, there are performance issues pertaining to VSAM and the RECON definition.
Specifically, they are:

� Use the same index control interval (CI) size and data CI size for all RECON data sets.
Ensure that the specified data CI size exceeds the index CI size by at least 2 048 bytes, or
else you degrade your RECON performance.

Chapter 8. System considerations 159

� Space allocation for IMS Version 9 must be twice the IMS Version 7 size.

– Make the three RECONs different sizes (make the SPARE the largest), so that they do
not all run out of space at the same time.

� Use secondary allocation in the event that your RECON data set runs out of space.

� We recommend the following keywords on the DEFINE CLUSTER command:

– CONTROLINTERVALSIZE: Our recommendation is 8 192 K for data and 4 096 K for
the index. Remember that the index CI size must be at least 2 048 bytes smaller than
the data size and that all index and data components must have the same CI size.

– FREESPACE: Our recommendation is that you specify at least 50% free space, and
you can lower this amount of free space when you are happy with the usage of the
RECON data sets.

• Make the FREESPACE characteristics different on each RECON so that they do not
take CI and CA splits at the same time.

– KEYS must be specified as KEYS(32 0).

– We recommend NONSPANNED, because DBRC always writes records smaller than
the VSAM CI size. DBRC divides its own records into segments, each of which is
always smaller than a single control interval and each of which is seen by VSAM as a
complete physical record. VSAM record spanning is not used. Segmenting allows a
logical RECON record to be as large as 16 MBs independent of the VSAM
RECORDSIZE parameter.

However, this does not mean that the RECON records can grow indefinitely. A very fast
growing PRILOG record can indicate incorrect image copy frequency, due to an
unexpected increased volume of logging. So it might be useful to readjust your
threshold values:

• LOGALERT(dsnum,volnum), which triggers the DSP0287W warning message

• SIZALERT(dsnum,volnum,percent), which triggers the DSP0387W warning
message or the DSP0007I informational message

These two parameters give you the opportunity to react, such as deleting inactive logs,
executing Image Copy, or ensuring that log compression is not inhibited, and to correct
this before the IMS system abends. The two parameters give you time to determine
what is causing the extremely large PRILOG record. You probably want to issue the
messages much earlier than the default values do, so the value settings might need to
be readjusted. You can find examples of more reasonable values in the IBM Redbook,
IMS Version 8 Implementation Guide A Technical Overview of the New Features,
SG24-6594.

– We recommend that RECORDSIZE is CI size minus 7 bytes. If the CI size was defined
as 8 192 bytes, then RECORDSIZE (4086,8185) would apply.

– SHAREOPTIONS must be specified as SHAREOPTIONS (3,3).

– SPEED is recommended, because the initial load is faster.

– NOWRITECHECK is recommended, because IMS manages dual copies of the
RECON, which eliminates the need for writing checks.

� Use dynamic allocation for all your RECON data sets across all your IMS systems.
RECON data set names must not be coded in JCL. It is also easier to deallocate the data
set if required.

� Ensure that the RECON data sets are monitored and reorganized when required. When
performing a reorganization, always cycle through all RECON data sets to make sure that
RECON1 and RECON2 are always indicated as COPY1 and COPY2. Remember to back
up your RECON data sets before you perform any reorganization.

160 IMS Performance and Tuning Guide

� To avoid deadlock situations, give special consideration to the placement of RECON data
sets that are shared among multiple processors. During a physical open, DBRC reserves
RECON1, RECON2, and RECON3. DBRC determines which are available and which are
Copy1, Copy2, and spare. DBRC then closes and dequeues the spare (if it exists) and any
unusable RECON data sets. So, during the use of DBRC, two RECON data sets are
reserved most of the time. DBRC always reserves both RECON data sets in this order:
RECON1 and RECON2. If RECON1 and RECON2 are specified consistently throughout
jobs, DBRC does not encounter deadlock.

8.2.3 Resolving data set contention problems

The availability and performance of the RECON data sets are dependent on whether Global
Resource Serialization (GRS) is running in a star or ring configuration. GRS provides
methods to convert a RESERVE into a ENQ request. The ENQ, DEQ identifies a resource by
its symbolic name containing major name, minor name, and scope. To ensure that resources
are treated as you want them to be treated without changes to your applications, GRS
serialization provides three resource name lists (RNLs):

� SYSTEMS EXCLUSION RNL

A list of resources that are requested with a scope of systems that you want global
resource serialization to treat as local resources.

� RESERVE CONVERSION RNL

A list of resources that are requested on RESERVE macros for which you want global
resource serialization to suppress the RESERVE.

� SYSTEM INCLUSION RNL

A list of resources that are requested with a scope of system that you want global resource
serialization to treat as global resources.

We recommend in order to avoid contention problems:

� In a GRS star configuration, a RESERVE CONVERSION RNL should be implemented for
DSPURI01 if all systems accessing the RECON data sets are within the sysplex (or
GRSPlex). If the RECON data sets are accessed by systems that are outside of the
sysplex, the RESERVE must not be converted. A SYSTEMS EXCLUSION RNL must be
implemented instead. If you implement GRS RNL CONVERSION by adding the QNAME
for the RECON data set, DSPURI01, to the conversion list, the hardware reserve is
eliminated and replaced by a GRS enqueue that is communicated to all other sharing
z/OS systems. Other data sets on the same DASD volume can be used while the RECON
data set is reserved; this is the benefit of performing the RNL conversion. GRS RNL
CONVERSION uses CPU and storage and affects system performance positively. The
performance (in terms of the least CPU time used, the least storage used, and the least
elapsed time) is best by using this option in a GRS STAR configuration.

In an IMS Fast Path 2-way data sharing environment comparison done in a controlled
environment at the Silicon Valley Laboratory in which 6000 IMS Fast Path areas were
opened in parallel using BMP, a significant reduction in total elapsed time was observed
when the reserve is converted. In a GRS star configuration, placing DSPURI01in the
conversion list, as well as both SYSZVVDS and SYSVTOC (these two should always be in
the same RNL), produced a roughly 3.5% reduction in total BMP elapsed time.

� In a GRS ring configuration, a SYSTEMS EXCLUSION RNL should be implemented for
DSPURI01 so that the RECON is serialized by the hardware reserve. In this case, the
following also applies:

– The RECON data sets must be the only objects in their respective catalogs.

Chapter 8. System considerations 161

– The RECON data sets must be on the same device as the catalog and isolated from
other data sets.

8.2.4 DBRC RECON maintenance
Monitoring the status of IMS RECON data sets should be one of the IMS database system
administrator’s routine tasks. IMS RECON data sets can be considered as the heart of the
IMS system, especially when data sharing has been enabled. Even without data sharing,
RECON data sets are used to store recovery-related information about subsystems, logs, and
utility executions along with other pertinent information. The RECON data sets are critical
resources for IMS. If all RECON data sets are lost, IMS cannot continue processing and it
terminates abnormally.

RECON data sets are VSAM key-sequenced data sets (KSDS) that should be periodically
reorganized. For direction and guidance about allocating RECON data sets, refer to the IMS
Version 9 Database Recovery Control Guide and Reference, SC18-7818.

You can enter the TSO command, LISTC ENT('IMS910.RECON1') ALL, to determine the
number of records, CI splits, and CA splits, in order to determine whether the RECON data
sets might require reorganization. When one of the RECON data sets is in a DISCARDED
state, take advantage of the situation and perform a reorganization on that one data set. A
RECON data set can become discarded by IMS due to a problem or by issuing a DBRC
CHANGE.RECON REPLACE() command.

RECON data sets can be reorganized by both an online process and a batch process. These
processes should only be run during a slow period of activity in the IMS region because
copying the RECON data sets from one data set to another might affect the performance of
IMS.

If a RECON data set is discarded by IMS, you should, at a minimum, perform the delete and
define step for the data set that has been discarded, in order to maintain two RECON data
sets and one spare. The other RECON data sets could then be reorganized at a slower
processing period.

Following is a process that can be used to reorganize the RECON data sets. To execute the
process while online IMS systems are accessing the RECONs, the RECON data sets need to
be dynamically allocated:

1. Enter the DBRC command to determine the status of the RECON data sets. If entering
DBRC commands from the z/OS MCS or E-MCS console, be sure to enter a period at the
end of the command or the IMS system issues the message “DFS972A *IMS AWAITING
MORE INPUT*.” The syntax of the command is as follows when entered as an IMS
command:

/RML DBRC='RECON STATUS'.

You can also execute this command by submitting a job similar to the one in Example 8-2
on page 163. The command to be used, LIST.RECON STATUS, is provided in the SYSIN
stream.

You might also want to delete unnecessary log information from the RECON by issuing the
DELETE.LOG INACTIVE command before starting the reorganization. This can be done in
the same job, as in Example 8-2 on page 163.

Note: Batch jobs also ENQ on a minor name so that they serialize on each other and avoid
monopolizing the RECON to the detriment of online IMSs.

162 IMS Performance and Tuning Guide

Example 8-2 Job for executing DBRC command

//JOUKO5RL JOB CLASS=A,MSGCLASS=X,REGION=4M
//**
//* USE: RECON LIST
//**
//*
//JS010 EXEC PGM=DSPURX00
//*
//STEPLIB DD DSN=IMS910G.SDFSRESL,
// DISP=(SHR,KEEP,KEEP)
//*
//SYSPRINT DD SYSOUT=*
//SYSUDUMP DD SYSOUT=*
//*
//SYSIN DD *
LIST.RECON STATUS
DELETE.LOG INACTIVE
/*

2. Example 8-3 shows the most interesting part of the output from the command.

Example 8-3 LIST.RECON STATUS before starting the reorganization

-DDNAME- -STATUS- -DATA SET NAME-
 RECON1 COPY1 IMS910G.RECON1
 RECON2 COPY2 IMS910G.RECON2
 RECON3 SPARE IMS910G.RECON3

3. Issue CHANGE.RECON REPLACE(RECON1) to discard RECON1. RECON2 is copied to
RECON3, and RECON1 is discarded. Output of the command is shown in Example 8-4.

Example 8-4 Output of the CHANGE.RECON REPLACE(RECON1) command

CHANGE.RECON REPLACE(RECON1)
DSP0380I RECON2 COPY TO RECON3 STARTED
DSP0388I SSID=IMSG FOUND
DSP0388I 0001 SSYS RECORD(S) IN THE RECON AT RECONFIGURATION
DSP0381I COPY COMPLETE, RC = 000
DSP0242I RECON1 DSN=IMS910G.RECON1
DSP0242I REPLACED BY
DSP0242I RECON3 DSN=IMS910G.RECON3
DSP0203I COMMAND COMPLETED WITH CONDITION CODE 00
DSP0220I COMMAND COMPLETION TIME 06.277 14:58:42.8

4. After the CHANGE.RECON REPLACE(RECON1) command, RECON2 is the new COPY1 and
RECON3 is the new COPY2, and RECON1 is in DISCARDED status, such as
Example 8-5.

Example 8-5 LIST.RECON STATUS after replacing RECON1

-DDNAME- -STATUS- -DATA SET NAME-
 RECON2 COPY1 IMS910G.RECON2
 RECON3 COPY2 IMS910G.RECON3
 RECON1 DISCARDED IMS910G.RECON1

5. Before you can delete the cluster, you must ensure there are no other users, such as
batch jobs, that are using the data set. If you are using the automatic RECON loss
notification feature, all DBRC instances, which have been registered with the Structure
Call Interface (SCI), are automatically notified about the reconfiguration and the discarded

Chapter 8. System considerations 163

RECON data set. The SCI is used for the communication between all registered DBRC
instances across your IMSplex. The unavailable RECON data set gets discarded instantly
from all notified DBRC instances. As long as you are using dynamic allocation for your
RECON data sets, all involved DBRC instances also deallocate the discarded RECON
data set.

If you are not using automatic RECON loss notification feature, then online IMS
subsystems, when they next access the RECONs, release the RECON that has been
discarded. You can force IMS to access the RECON by issuing /RML DBRC=’RECON
STATUS’. or the /DIS OLDS command.

6. Now you need to delete and define the VSAM cluster for the discarded RECON by using
the appropriate attributes from “Defining the RECON data sets” on page 159. It is a good
practice to store the IDCAMS statements for each RECON, because you might want to
use the same attributes that were used when the RECON was previously allocated.

For the above RECON listing, delete and define RECON1, which is currently discarded. If
you now display the RECON again, you see that RECON1 is now shown as a SPARE, as
in Example 8-6.

Example 8-6 LIST.RECON STATUS after redefining the VSAM cluster for RECON1

-DDNAME- -STATUS- -DATA SET NAME-
 RECON2 COPY1 IMS910G.RECON2
 RECON3 COPY2 IMS910G.RECON3
 RECON1 SPARE IMS910G.RECON1

7. Issue the CHANGE.RECON REPLACE(RECON2) command to discard RECON2. RECON3 is
copied to RECON1 and RECON2 is discarded.

8. Now you need to delete and define the VSAM cluster for the discarded RECON2. Before
you can delete the cluster, you must ensure there are no other users using the data set.
See step 5 on page 163 for details.

9. Delete and define the discarded RECON2 by using the appropriate parameters from
“Defining the RECON data sets” on page 159. RECON2 becomes the new spare.

10.Issue the CHANGE.RECON REPLACE(RECON3) command to discard RECON2. RECON3 is
copied to RECON1 and RECON2 is discarded.

11.Now you need to delete and define the VSAM cluster for the discarded RECON3. Before
you can delete the cluster, you must ensure that there are no other users using the data
set. See step 5 on page 163 for details.

12.Delete and define the discarded RECON3 by using the appropriate attributes from
“Defining the RECON data sets” on page 159. RECON3 becomes the new spare. All of
the VSAM clusters have now been redefined, and RECON1 is now the COPY1 and
RECON2 is COPY2 as they were at the starting point.

Note: The automatic RECON loss notification feature can be used to simplify the
process. The automatic RECON loss notification feature is optional and is automatically
enabled if the SCI address space is up and running on the same z/OS image and the
DBRC instance registers with SCI as a member of IMSplex.

164 IMS Performance and Tuning Guide

You can automate this process by putting all the previous steps in the same job, but you need
to schedule the job at a time when there are no other subsystems using the RECON. You
must also ensure that the discarded RECON is released by all the sharing online systems.
With only one online subsystem and no other users (batch jobs or utilities), you can perform
the /DIS OLDS command by executing an automated operator BMP. With multiple systems
sharing the RECON, you must propagate the command to the other systems. You can set up
the automatic RECON loss notification feature for this purpose.

8.3 SMF and RMF considerations

For SMF, you should check the SMFPRMxx member of SYS1.PARMLIB. A parameter called
DDCONS should be specified, and it should be set to DDCONS(NO). The default, if not
specified, is YES. Setting this to NO does not affect any ability to gather data. Specifying YES or
allowing DDCONS to default causes the system to consolidate DD information at every
interval, which is also specified in this parmlib member. This can be a CPU intensive task for
address spaces with a lot of open data sets, such as IMS and DB2, and can cause delays on
a cyclical basis.

The RMF VSTOR parameter can also cause cyclical delays when the detail option is chosen
for address spaces with large amounts of storage, such as IMS. The detail option can be
turned on and off by command if you want this information, but you should not leave it on
permanently or specify detail in the RMF start parameters.

8.4 Security considerations

IMS uses the SAF interface to check security. The product performing the security check can
be RACF or another security product. IMS does not support Security Maintenance utility
(SMU) after IMS Version 9. For this reason, security functions that required the use of SMU
can now be performed using RACF, RAS, and security exits.

Table 8-1 provides the various resource classes that need to be managed by RACF. If the
resource class does not exist in RACF, it needs to be defined by your RACF administrator.
Resource classes are defined in IMS using the RCLASS= keyword in the SECURITY macro
during IMS system generation. For a detailed description of the implementation of these
various options, consult the IMS Version 9: Administration Guide: System, SC18-7807.

In conjunction with the resource classes, there are startup and system generation parameters
that need to be considered. Most of these parameters can be changed in the DFSPBxxx
startup member in IMS. Some parameters can also be changed using IMS commands. The
IMS Version 9: Administration Guide: System, SC18-7807, provides a list of these
parameters.

Table 8-1 Resource classes used by RACF

Description Class Name DB/DC, DCCTL, or DBCTL

APPC/IMS APPCTP, APPCLU, and
APPCPORT

DB/DC and DCCTL

Application group name AIMS DB/DC, DBCTL, and DCCTL

Command resource class CIMS DB/DC and DCCTL

Command group resource
class

DIMS DB/DC and DCCTL

Chapter 8. System considerations 165

Consideration must be give to the requirements for setting up the RAS interface. There are
many RACF classes that need to be reviewed in conjunction with your current SMU
requirements.

The following guidelines are presented with RACF in mind but conceptually apply to any
security environment:

� Specify multiple RACF TCBs in IMS by using the RCFTCB= startup parameter. The
default is one, but you should consider two or more depending on how much signon and
signoff activity you have.

� Split the RACF database into multiple data sets to take advantage of the multiple TCBs in
IMS.

� Cache ACEEs in VLF. This is accomplished by specifying the IRRACEE class to VLF and
causes the ACEEs to be kept in VLF, once they are initially loaded, for subsequent access.

� Cache group trees similar to the above but by using the IRRGTS class in VLF.

� Use CF structures for the RACF database. This can reduce RACF I/O from milliseconds to
microseconds.

� Specify APPCSE=CHECK or OTMASE=CHECK instead of FULL if possible. This reduces
the number of ACEEs which need to be created.

� Investigate the use of the DFSBSEX0 exit routine. It might be possible to reduce the
number of calls to security in certain cases, such as CHNG or AUTH calls, as well as other
situations.

� Activating many RACF resource classes results in overhead, because the path length
compared to SMU would be a lot more. This overhead must be measured and the
business benefit understood before implementation.

Database resource class DIMS DB/DC and DCCTL

Database group resource class QIMS DB/DC and DCCTL

Field resource class FIMS DB/DC and DCCTL

Field group resource class HIMS DB/DC and DCCTL

LTERM resource class LIMS DB/DC and DCCTL

LTERM group resource class MIMS DB/DC and DCCTL

Other resource class OIMS DB/DC and DCCTL

Other group resource class WIMS DB/DC and DCCTL

PSB resource class IIMS DB/DC, DBCTL, and DCCTL

PSB group resource class JIMS DB/DC, DBCTL, and DCCTL

Segment resource class SIMS DB/DC and DCCTL

Segment group resource class UIMS DB/DC and DCCTL

Transaction resource class TIMS DB/DC and DCCTL

Transaction group resource
class

GIMS DB/DC and DCCTL

Description Class Name DB/DC, DCCTL, or DBCTL

166 IMS Performance and Tuning Guide

8.5 Batch application performance

Batch application program performance should not be ignored. The EXEC statement has
several performance-oriented options as discussed here.

8.5.1 Using DLI or DBB

The default batch application region type for most applications is DLI. This makes IMS build
the application control blocks, for every execution, from the PSB and related DBDs, thereby
consuming CPU and I/O resource every time. DLI is the wrong choice for production batch
applications but is entirely suitable for application development and testing.

DBB makes IMS use the pre-built ACBs (see the ACBGEN utility). Using the pre-built ACBs
saves CPU and I/O resources on every batch execution. Using the pre-built ACBs is also
advantageous for avoiding errors that are injected by application developers and testers
incorrectly updating the production PSB and DBD libraries when they meant to work on a
testing set. Here are our recommendations for the batch parameters:

� PSB=

The default for PROCOPT= and even frequently chosen by casual developers, is ALL
(PROCOPT=A). Although this choice often has little impact even when the program only
reads the database, it does begin to matter in sharing environments, whether in a single
online system or in Parallel Sysplex data sharing. The locks taken by PROCOPT=A are
more restrictive than those for PROCOPT=Gx. The recommendation is to always specify
the lowest possible PROCOPT for all programs so that they are better behaved as the
installation moves toward data sharing.

� BUF=7

Sets the default OSAM buffer pool. This should always be overridden by specifying all the
database buffer pools through DFSVSAMP DD.

� EXCPVR=0

Prevents page fixing of the OSAM buffer pool. This is the correct choice these days.

� PRLD=

Selects execution modules to be preloaded. Of limited value in batch environments.

� SPIE=0

This value allows the application SPIE to remain in effect during a database call. This is
the correct value for a production application, because all bugs should have been
eliminated, and therefore, '0' eliminates CPU involved in saving and resetting the SPIE
around the call.

� SRCH=0

Tells IMS to use the standard library search when looking for modules. It is unlikely that
batch applications reside in LPA or JPA, so this is the correct value.

� SWAP=

Makes address space swappable (Y) or nonswappable (N). The default is Y.

If you are using DBRC, you might want to choose option N because of the possibility of
swapping out while holding the reserve on RECON.

If you are using IRLM for block-level data sharing, the SWAP parameter has no effect. If
you specify IRLM=Y, a batch job is always nonswappable to prevent the job from obtaining
locks for resources and then being swapped out.

Chapter 8. System considerations 167

� TEST=0

Another testing aid that should not be in effect for a production batch job. '0' is the correct
choice.

� DFSVSAMP DD

This data set of control statements (could be a member of a PDS) should always be
specified to set up the appropriate mix of database buffer subpools for the application.

Setup effort can be saved by using a few standardized pool setups for multiple
applications. Buffer pool setup is described elsewhere in this book.

8.6 Utility performance

The standard IMS utilities are compatible with their setup in the earliest IMS releases (such
as IMS/360 V1 in 1968). This means that, as they ran in a storage constrained world, they
used the minimum number of data set buffers by default, usually two. Where more virtual
storage is available, as is the case today, the number of data set buffers can be significantly
increased to the elapsed time benefit of the utility executions.

All utilities should have the buffer number overwritten through the DD statement, allocating
maybe hundreds of buffers. The various IBM and vendor go-faster products exploit the
increased available storage automatically without requiring much in the way of definition.

Utilities, such as Change Accumulation, that invoke sorts internally benefit from increasing
the amount of sort storage available. The defaults are far too small. Different utilities have
different ways of specifying the storage to use.

168 IMS Performance and Tuning Guide

Chapter 9. Application considerations

This chapter discusses IMS application considerations and talks about designing applications
in an IMS environment. It covers aspects related to performance and the design of
applications.

This chapter contains the following:

� IMS application interface where we discuss the language interface and what you must do
to invoke the interface

� Structure of a typical program using the language interface

� Application considerations for performance when looking at writing applications that
operate in a IMS environment

� IMS and language environment

This chapter assumes that you have programming experience and that you have coded IMS
programs.

9

© Copyright IBM Corp. 2006. All rights reserved. 169

9.1 IMS language interface

IMS supports application programs written in Assembler, COBOL, Enterprise COBOL for
z/OS, PL/1 for z/OS, z/OS C/C++, Pascal, REXX, and Java™. Java programming
considerations are discussed in Chapter 12, “IMS On Demand performance” on page 211.

In order to protect IMS and shield the developer from internal complexities, IMS makes use of
an application programming interface called the IMS language interface. The language
interface consists of both the language specific interface and the non-language specific
interface. The inherent difference is that the former is language dependent and therefore only
supports the language in question. The latter is language independent and therefore can be
called from any of the supported languages in IMS.

For simplicity, we use COBOL as the preferred programming language and show examples of
the language dependent interface only.

Figure 9-1 shows the structure of an application program as it relates to IMS and the
language interface. A simple call to CBLTDLI with the required parameters ensures that IMS
can obtain the data or message that is required by the application for processing. In its
simplest form, we can either retrieve or send a message, or alternatively, retrieve and send
data to a database in IMS.

Figure 9-1 Structure of an application program

9.1.1 Structure of a typical program using the language interface

The structure of any IMS program must take into account a number of issues:

� The hierarchy of all the databases that the application uses, which is called the DL/I
hierarchy. You need to understand the root and dependent segment relationships in detail.

� IMS separates the program from the physical characteristics of the database. This is
possible by providing the program access to the program specification block (PSB). The
program does not need to concern itself with the physical characteristics of the database
description (DBD).

Application Program

PROGRAM ENTRY
DEFINE PCB AREAS
GET INPUT RECORDS FROM INPUT FILE
CALLS TO DL/I DB FUNCTIONS

RETRIEVE
INSERT
REPLACE
DELETE

CHECK STATUS CODES
PUT OUTPUT RECORDS
TERMINATION

DLI modules

PCB-Mask

Call info
from DLI

E
N
T
R
Y

SEGMENTS
TO/FROM
DATABASES

IO AREA E
X
I
T

170 IMS Performance and Tuning Guide

� The application program can only access the database using its program communication
block (PCB) as defined in the PSB. The application therefore only has the view of the data
as defined in the PCB.

� The call to the language interface is actually using the alias CBLTDLI. At linkage time, the
linkage editor resolves the reference to DFSLI000.

Essentially, an IMS COBOL program includes the following processes:

� Program entry showing all the various sections of the program
� PCB definitions as per the Procedure Division mapping to the PSB
� I/O area definitions as required to retrieve and send messages and database segments
� DL/I calls as required by IMS
� SSA definitions as required by the database hierarchy
� Call to the language interface using CALL CBLTDLI
� Termination of program

9.2 Performance and programming considerations

Accessing data from a hierarchic database requires that we understand certain basic rules
around Segment Search Arguments (SSAs). An SSA provides the application program with
the ability to access data as specified by the hierarchy. Using the correct DL/I retrieval call
makes the retrieval process a lot more efficient. Consider the following:

� If you need to process all segments sequentially in ascending sequence, within a
database, a database record, or a specific segment type, use unqualified SSAs.

� If you need to process segments in a skip sequential order in ascending sequence, always
fully qualify the root segment.

� If you need to process database records directly, as in a random order by online
transactions, use a qualified SSA.

� We recommend that you use command codes to eliminate the overhead of doing multiple
DL/I calls.

� We recommend using programming standards for efficiency and reusability. Issues
pertaining to standards are as follows:

– Use the COPY facility in COBOL to copy any predefined areas that are shareable
across multiple programs. This prevents duplicating code. Function codes, segment
descriptions, SSAs, and PCB masks are some of the common copybooks that you
require.

– Keep your I/O routines separate so that they can be easily changed if required.
Checking status codes should be performed by a subroutine. This allows any new
status codes that are introduced to be easily adapted.

– Use a modular approach to design your application. Keep generic functions as
subroutines that can be called by any program wanting to make use of this service.

– With batch processing, try to perform all your business requirements through a single
pass of your data. If you require data for input into another process, create flat files with
the required data rather than reading the database again.

9.2.1 SSA considerations

SSAs can be either qualified or unqualified. A qualified SSA identifies a specific occurrence of
a segment. With a unqualified SSA, you identify only the segment type. When incorporated
with command codes, we end up reducing the number of DL/I calls required to retrieve a

Chapter 9. Application considerations 171

segment or occurrences of a specific segment type. Assume we have a hierarchy as depicted
in Figure 9-2.

Figure 9-2 Sample hierarchy

We compare the differences between standard DL/I calls and those using command codes.
For purposes of illustration, we only use the F command code. The input data consists of
names. Assume we would like to produce a listing of all names that match the input data. The
program should check each dependent EDUC segment for the given name and if an MBA
degree is detected for the person, return to the first EDUC segment and list all his degrees.
Table 9-1 gives us the calls that are required.

Table 9-1 Comparison of standard DL/I call as opposed to command code

The first solution without command codes is to issue a GU call to the NAME segment
qualified by the input data. A GNP call to the EDUC segment qualified on degree of MBA
initiates a search of all dependent segments for a segment that meets that qualification. If
none is found, the next input record can be read. If the person has an MBA, a GU call for the
NAME qualified again by the input data backs up the database position to the root segment. A
series of GNP calls specifying the EDUC segment retrieve all those dependent segments,
which then are listed.

The second solution utilizes the “F” command code after a hit has occurred on the degree of
MBA. For GN or GNP calls, the “F” command code allows backing up to the first occurrence
of this segment type within a database record. Therefore, unlike solution one, a GU call is not

Standard DL/I call logic Using command codes

GUbb NAMEbbbb(LASTNMbbb=ADAMS)
GNPb EDUCbbbb(DEGREEbbb=MBA)
GUbb NAMEbbbb(LASTNMbbb=ADAMS)
GNPb EDUCbbbb

GUbb NAMEbbbb(LASTNMbbb=ADAMS)
GNPb EDUCbbbb(DEGREEbbb=MBA)
GNPb EDUCbbbb*Fb
GNPb EDUCbbbb

172 IMS Performance and Tuning Guide

required to reestablish position at the root level for subsequent GN type calls, thus, saving an
additional call and simplifying the programming.

Figure 9-3 shows the various command codes and which DL/I call type is suited for the
command code. If a command code is used with a function for which it is not suitable, then it
is ignored. There are no status codes for invalid combinations of command codes. IMS
assumes certain defaults. If two command codes are in direct conflict, the last one within the
set is effective. However, “F” or “L” override “U” or “V” in the same SSA.

Figure 9-3 Command codes by DL/I call type

9.2.2 Single as opposed to multiple positioning

When single positioning (the default) is specified for a PCB, DL/I maintains only one position
in that database for that PCB. This position is used to attempt to satisfy all subsequent GN
calls. If an application requires parallel processing of segment types, a better solution is to
use multiple positioning. Multiple positioning is specified in the PSB as shown in Example 9-1.

Example 9-1 Single and multiple positioning

PCB... POS=S
PCB... POS=M

The use of multiple positioning allows you greater independence for dependent segments. It
allows the programmer to use GN or GNP calls without regard to the relative order of
segment types within the DBD. If the relative order of segment types was reversed and
multiple positioning was specified, the change would have no impact to application programs
using multiple positioning. However, multiple positioning requires the programmer to keep
track of all positions maintained by DL/I; therefore, this approach requires additional coding.
In any case, the program coding between single and multiple positioning is different. See
Figure 9-4 on page 174.

Chapter 9. Application considerations 173

Figure 9-4 Differences between single and multiple positioning

Figure 9-4 shows the differences between a GNP call using single and multiple positioning. A
“GE” status code is returned for single positioning when a GNP call is made to retrieve the
second ORDER segment, because a GNP call can only move forward within the database.
With multiple positioning, a position is maintained at each hierarchical leg within the database
record until all segment occurrences are exhausted.

If we now replace the GNP call with a GN call, for single positioning the second call to the
ORDER segment retrieves the first ORDER segment of the next root segment, the third call
the next root segment, and so on. Each call moves forward in the database. With multiple
positioning, the results of a GN call would be the same as the results of the GNP calls, except
that the “GE” status on the next to last call retrieves the first ORDER segment of the next root
segment.

There are also restrictions when using multiple positioning and a mixture of qualified and
unqualified SSAs. We recommend that the programmer does not mix qualified and
unqualified calls with multiple positioning, because the results could be unpredictable.

9.2.3 Variable length segments

You must make many decisions during the application design and the database design.
Variable length segments must be considered when the size of the segment varies dependent
on the data. Variable length segments save space in the database, and the programmer is
responsible for ensuring that the size is defined correctly as part of the segment data to be
inserted. The minimum and maximum sizes are specified in the DBD with the
BYTES=(max,min) parameter. The inserted size can never exceed the max size. If it does, a
“V1” status code is returned to the application.

The key field of a variable length segment type must be contained within the minimum size as
defined during DBD generation. Other non-key search fields that can be used in SSAs might

174 IMS Performance and Tuning Guide

appear anywhere within the segment.If a search is initiated on a non-key field and the field
does not appear within a specific segment occurrence, a blank or zero is assumed for that
data depending on how the data was originally described.

When used correctly, variable length segments can improve the efficiency of the database.
However, they do involve overhead, especially if they are updated frequently. If you are using
variable length segments, you should ensure that their length does not change frequently.

9.2.4 Secondary indexing

Secondary indexing (SI) was designed to provide two basic facilities:

� To provide processing of a database in sequences other than the prime root key
sequence.

� To provide a direct search capability into a database record other than key field of the root.

Secondary indexes are automatically maintained by DL/I, when the program inserts, replaces,
or deletes data within a database.

Some considerations when using secondary indexes:

� Secondary indexing is a database structuring technique and normally concerns the
database administrator. It should be transparent to the majority of the application
programmers. However, because the same logical structure can yield two different results
in the PCB key feedback area, the programmer should be aware of these differences.

� The index target segment is the segment in the prime database pointed to by the SI
segment. It is the segment that DL/I selects to satisfy the call made by the application.

� The XDFLD is a special field within the DBD that contains the name of the key field data of
the SI. The XDFLD name can be used in SSAs for the target segment. When the SI is
used, the XDFLD is considered the key field of the target segment, and thus its value is
placed in the key feedback area on any access to that segment.

� The pointer segment is the segment in the secondary index database that allows the SI to
be used as a database.

9.2.5 Program reusability considerations

When coding an IMS COBOL program, the manner in which you set up and initialize working
storage plays an important role in the eventual performance of the application. A program is
truly reusable if it is capable of executing multiple transactions through a single copy of the
program. In an IMS world, online transactions execute in a dependent region. If a copy of the
program executes for the first time in a dependent region, the programmer must ensure that
the logic of the program is not compromised after subsequent iterations of the same
transaction in the same dependent region. In other words, working storage areas should be
initialized prior to retrieving a message.

9.2.6 Processing options and the PROCOPT statement

The PROCOPT parameter can be coded on the PCB and the SENSEG statement. If the
PROCOPT parameter is not coded on the PCB statement, then it defaults to PROCOPT=A
(all). When the PROCOPT is coded on the SENSEG statement, it overrides what is specified
on the PCB statement, assuming they are compatible. IMS always locks a database record
based on the PROCOPT specified on the PCB statement. In Example 9-2 on page 176, the
PCB PROCOPT defaults to A.

Chapter 9. Application considerations 175

Example 9-2 PROCOPT

PCB...
 SENSEG...PROCOPT=GO

When a program accesses the SENSEG, the GO applies, because the SENSEG overrides
the PCB when they are compatible (GO is a subset of A). However, IMS locks on the PCB
statement. Therefore, if the program was read only, IMS would still use the PROCOPT=A
default on the PCB to lock the entire database record. This affects the performance of a read
only program. So, a PROCOPT must always be coded on the PCB statement.

9.2.7 Read only programs

For those programs that are read only on a database, two options can be specified. The first
is read with integrity. This means that the read only program must retrieve data that is 100%
up-to-date. If this is the case, then PROCOPT=G should be specified. The second option is
read without integrity. This means that the read only program needs information that is not
necessarily 100% up to date. If this is the case, then PROCOPT=GO should be specified.
This tells IMS not to enqueue on the database record. As a result, the read only program
might run concurrently with an update program and not cause database record lockouts.

However, a PROCOPT=GO call might cause a program to ABEND with a U0853, because of
IMS pointers that are not 100% up-to-date. Therefore, use PROCOPT=GON for read only
jobs that do not require 100% integrity (see 9.2.8, “PROCOPT=GOT with DBRC SHARECTL”
on page 176 for more information about GOT). When GOT is used and IMS encounters a bad
pointer, IMS reads the segment a second time. If the pointer is still bad on the second read,
then IMS returns a “GG” status code to the program. The program can then decide whether to
issue the read again, to ABEND, or bypass that segment. Using GOx reduces the number of
U085x ABENDs.

9.2.8 PROCOPT=GOT with DBRC SHARECTL

We strongly recommend that you use DBRC SHARECTL and register all databases in a
production environment. However, be aware that IMS performance degradation can occur
when using PROCOPT=GOT and DBRC SHARECTL.

This degradation applies to all users and might well apply to databases other than the one
accessed with PROCOPT=GOT. This degradation applies to IMS DB/TM, DBCTL, CICS, and
batch sharing environments.

If an invalid pointer is detected when using PROCOPT=GON or GOT, then processing is
retried. With PROCOPT=GON, retry processing simply retries the call and returns a GG
status code if the problem is still present.

The retry processing for PROCOPT=GOT consists of two actions:

� If a locking environment exists, a test lock on the database record containing the segment
being retrieved is requested. (A locking environment exists for an IMS DB/TM, IMS
DBCTL, or CICS system and also for IMS batch jobs if block-level data sharing is used.)

Note: From a business perspective, supplying information based on aggregating data
(such as number of employees) with PROCOPT=GO calls is usually acceptable, because
minor errors are probably not significant. Supplying information based on a single record or
a small number of possibly erroneous records by using PROCOPT=GO can compromise
business integrity. Use PROCOPT=GO with care.

176 IMS Performance and Tuning Guide

The test lock causes call processing to wait until conflicting holders of locks on the
database record release their locks.

� The last block read for the call is reread.

This is an attempt to get the latest image of the block.

In many cases, this retry succeeds in correcting the problem that produced the original invalid
pointer condition. However, it can also cause serious performance degradation in the IMS
subsystem. The degradation might affect databases for which PROCOPT=GOT is not used.

As well as causing a reread of the last block, buffer invalidation takes place. This causes all
the buffers for all databases that are registered at a share level greater than 0 (1, 2, or 3) to be
invalidated. The lookaside process does not find any blocks in the pool for these databases
until they are reread from DASD. OSAM sequential buffering buffers are invalidated, as well
as other buffers.

If the use of PROCOPT=GOT causes unacceptable performance degradation, consider
changing PROCOPT=GOT to PROCOPT=GON.

We recommend that you use PROCOPT=GOT only if contention with updaters, though
possible, is highly unlikely.

9.2.9 Use of checkpointing in batch

Batch workload is extremely intensive and generally processes large amounts of data. When
compared to an online transaction, a batch workload can be looked at as processing multiple
messages in a single batch job. The problem is how to manage batch differently than online
and at the same time allow both batch and online to coexist using the same limited resources.
The second issue is how do we restart a batch job after it has run for a few hours. We
certainly do not want to restore and rerun the batch job. IMS checkpointing and restart
address these problems.

There are two types of checkpointing in IMS, namely:

� Basic checkpointing

– With basic checkpointing, the restart and repositioning become the responsibility of the
application.

� Symbolic checkpointing

– With symbolic checkpointing, IMS restores the application work areas specified in the
XRST call and performs the repositioning. The application then restarts processing
from the last successful checkpoint.

There are performance considerations when looking at checkpointing in a batch process. We
discuss a few critical issues around the design of batch processes:

� A checkpointing frequency plays an important role, especially if you have a mixture of
online and batch workload that runs concurrently. We recommend that you make the
checkpointing frequency an externally controlled variable either through a control data set
or by using the IMS APARM capability on the EXEC statement. An optimum balance must
be found and is usually a factor of how much work is performed by your batch process.
Assume that the driver to the batch process is an input file with two million records. Each
record requires complex processing across multiple databases. This unit-of-work per
record needs to be evaluated in terms of its profile. When you understand the profile and
how long it takes to process a single record, you can begin to work out the checkpoint
frequency. We recommend that your checkpoint frequency reflects the type of work that is
being performed. Too few checkpoints end up holding locks and might cause online

Chapter 9. Application considerations 177

transactions to wait until the locks have been released. Too many checkpoints result in
long batch run times, because the batch job spends most of its time checkpointing. A
balance between batch and online must be found, There is no single good general rule for
checkpointing, because it is a direct correlation to the complexity of the batch process.

� If your batch process updates Fast Path Data Entry Databases (DEDB), you have to
ensure that your application logic revolves around the use of Fast Path buffers, namely
Normal Buffer Allocation (NBA) and Overflow Buffer Allocation (OBA). When updating
records in a Fast Path database, your JCL normally overrides the NBA and OBA buffer
allocation. Once you have used up all your NBA buffers, IMS returns a “FW” status code to
your application. On receipt of the status code, you have to set an indicator in your
application to checkpoint at the next opportunity. Do not continue processing, because you
end up with a “FR” status code, resulting in your batch job abending. When deciding on fair
NBA and OBA buffer allocations, as a general rule, try to keep your NBA buffers to a
reasonable size that allows you to checkpoint often. Remember that the NBA and OBA
allocations come out of your total Fast Path pool defined at IMS startup time. A high NBA
value might cause other jobs or online transactions to abend if you are running a number
of batch jobs and online transactions concurrently.

9.2.10 Multi-streaming your batch processes

If your environment performs all its major consolidation of financial transactions at night using
a batch process, then you most likely have the problem of trying to complete your batch
before your next online day. To complicate matters further, if you need your online system to
be up 24x7x365, then you are faced with a bigger problem in that you must ensure that your
batch processes do not conflict with your online processes.

A common approach is to ensure that you run your batch workload in parallel through multiple
partitions or areas. If you use flat files as drivers for your batch process, then ensure that you
sort and split the files in the sequence of the database. This means that if you are PHIDAM,
then you would sort and split the files using the Partition Selection Exit or high keys as
specified in the RECON in ascending sequence. If you are using DEDBs, then you would sort
and split the files in randomizer sequence. The sorts and splits can be easily achieved
through specialized E15 and E35 exits using ICEMAN utility or alternatively, using ICETOOL.

Our recommendation is that if your batch processes are intensive and time is of the essence,
use OSAM sequential buffering for PHDAM (with a sequential randomizer) or use PHIDAM, to
sequentially process through the database, even if you are not updating each record. PHDAM
(without a sequential randomizer) benefits from OSAM sequential buffering if the processing
is consecutive (in relative byte address order) as with GN.

9.2.11 Why must online programs be serially reusable

When IMS receives a message for an message processing program (MPP) on the input
queue to process, it goes through several steps to process the request. Consider each run of
a program or transaction as a Message request to IMS. To keep this discussion in context, the
program in question has not yet been processed today. The first thing that happens is IMS
determines if there is a message region available for this program in which to execute. If there
is only one message region available and there are two messages eligible to execute in that
message region, IMS processes as follows (in order). IMS looks at the current priority of the
two messages and picks the one with the highest priority. Next, IMS loads in the program load
module. IMS loads in the application control block (ACB). The ACB is a marriage between the
program specification block (PSB) and the database definition (DBD). This all takes time and
impacts the performance of the transaction.

178 IMS Performance and Tuning Guide

Once the program and ACB are loaded, IMS then passes the message to the program and
passes it control. When the program is finished processing and sends a message back to the
user, control is given back to IMS. IMS does not want to do any more work than necessary; it
looks on the input queue to see if there are any different transactions with an equal or higher
priority to process. If there are, IMS flushes the ACB and program from memory and
proceeds with the new transaction. However, if there are no different transactions with an
equal or higher priority to process, and there are messages on the input queue for this same
transaction to process, IMS uses the same load of the program and ACB to process the next
message on the input queue. This is why the program has to reinitialize all of working storage
before it does a get unique (GU) to the input/output Program Communication Block (I/O PCB)
of the PSB. IMS continues to do this until the processing limit count of the transaction is
reached. Once the processing limit count is reached, IMS looks to see if it needs the
message region for some other transaction. If it does, the message region gets flushed and
the new transaction is processed. If not and there is more work for this transaction to process,
IMS resets the processing limit count, cuts some accounting records, and continues to use
the same program load and ACB. This is called a quick reschedule.

IMS continues to do this until it needs the message region or there are no messages for this
transaction to work on. Now it gets more complex. If IMS does not need this message region
to process other transactions and there are no more messages for the current transaction to
process, IMS keeps everything in the message region. The program and ACB just sit there
and wait for work to do. What IMS is hoping for is that another message for this program
shows up on the input queue before IMS needs this message region for a different program.
This is called pseudo wait-for-input.

There is also a parameter called the parallel limit count. This parameter determines how
many messages must be on the input queue for a transaction before IMS schedules it in
another message region. This allows multiple transactions of the same name to run
concurrently. A value of zero sets no limit. Generally, the parallel limit count is set to 5. If the
parallel limit count is set to 5, this means there must be five messages on the input queue
before IMS schedules another message region. However, now that there are two message
regions running the same program, there must be 10 messages on the input queue before
IMS schedules another message region and so on. It is possible for a single transaction to
occupy every message region available. There is a parameter called the maximum region
count to prevent this.

9.3 Language environment

The language environment (LE) provides a single run-time environment for high level
languages. It consists of the following:

� Basic routines that support starting and stopping programs, allocating storage,
communicating with programs in different languages, and handling conditions.

� Callable services to handle generic services, such as math and date/time services.

� Language-specific portions of the library that ensure that the behavior is consistent across
languages. Languages supported are:

– C/C++
– Cobol
– PL/I
– Fortran (but not in IMS)
– Assembler

The functional overview of the LE environment is shown in Figure 9-5 on page 180.

Chapter 9. Application considerations 179

Figure 9-5 Language environment view

9.3.1 Application and performance considerations in a LE environment

Performance of an application in a LE environment is governed by many variables, some of
which exist within LE and others are dependent on the application itself. Now we review
several issues with regard to implementing LE in your environment:

� Review and understand exactly what is meant by migrating to LE. This involves
understanding your applications and reviewing the requirements and differences between
working storage and local storage and how uninitialized variables impact the logic in your
program when converting to LE. The single important factor in your decision is the amount
of work that would be required to change programs if your programs are not LE compliant.
The end result is that the logic or program flow must not be impacted when moving to a LE
environment.

� Investigate the usage of Library Retention Routine (LRR) in your environment, because it
allows performance improvement for LE resources. Specify CEELRRIN in the DFSINTxx
member in PROCLIB.

� Review run-time options related to HEAP and STACK storage. The initial stack segment
should be large enough for all requests for stack storage. Stack storage is essentially used
for routine linkage and acquiring dynamic storage areas for the application. Storage for
data items declared in the COBOL LOCAL-STORAGE-SECTION is allocated using
STACK storage. Heap storage on the other hand has a lifetime unrelated to the current
execution of the current routine. It remains allocated until the enclave terminates. (An
example is a WFI region being terminated). For best performance, the initial HEAP size
must be large enough to satisfy all requests for HEAP storage. All working storage
variables are obtained from HEAP storage; therefore, it is important to ensure that your
working storage is initialized on each invocation. You need to review the following run-time
options:

– ANYHEAP, BELOWHEAP, HEAP, and THREADHEAP

Functional Overview of Compilers
and LE

Development Environment

Language Environment

Common Environment
 Condition Management
 Memory management
 Task management
 Subsystem interface

Common Protocols
 Tasking
 Linkage

Common Services
 Message
 Dump

Common Routines
 Math
 Callable services
 Language runtimes

InterLanguage
Communication

Support for the Debug Tool

CEE Architecture
LE-Callable Services
Common Library
Compiler Runtime Support
InterLanguage Communication
IMS/DB2/CICS Support

COBOL C/C++ FORTRAN PL/I ASM

Common Runtime Library required
for system components, e-business

tools, and supported programs!

180 IMS Performance and Tuning Guide

– LIBSTACK, STACK, and THREADSTACK
– ALL31(ON)

� The defaults cause the z/OS operating system to issue multiple getmains for STACK and
HEAP storage for the application and result in badly performing applications. Changes in
the profile of a transaction, especially CPU, would be noticeable when looking at your
tracking and trending reports of your workloads.

� With ALL31, you must ensure that all your applications are AMODE=31. If they are
AMODE=24 programs that coexist with AMODE=31, then you have to use ALL31(OFF)
and STACK(xx,xx,BELOW). We recommend that you try to ensure all programs are
AMODE=31.

� Setting the run-time options would require that you customize the run-time options using
either CEEDOPT (installation-wide defaults), CEEROPT (IMS region-wide default) or
CEEUOPT (application specific options).

Extensive testing is of prime importance. Testing has to follow a strict methodology in order to
identify any problems related to LE. A combination of both positive and negative testing must
be done in order to detect possible errors in the logic of programs. Performance testing must
also be performed to gauge the savings or overhead associated with LE.

Chapter 9. Application considerations 181

182 IMS Performance and Tuning Guide

Chapter 10. Performance considerations with
DB2

In DB2, there is a hierarchy. At the bottom of that hierarchy is a table. A DB2 table is like an
IMS segment. Tables live in tablespaces (a physical data set), and there can be many tables
in one tablespace. Tablespaces live in a DB2 database, and, hence, a hierarchy. There can be
many DB2 databases defined to the DB2 region.

Several DB2 attachment facilities are provided for different environments:

� IMS External Subsystem Attach Facility (ESAF)
� IMS batch attach facility
� CICS attach facility
� TSO attach facility
� Call attach facility for any z/OS batch

The IMS ESAF interface provides access to external subsystems from any supported region
type (MPP, BMP, IFP, JMP, or JBP) in any IMS system environment (DM/TM or DBCTL).

This chapter describes the IMS ESAF and various aspects of performance related to its use
accessing DB2.

10

© Copyright IBM Corp. 2006. All rights reserved. 183

10.1 IMS External Subsystem Attach Facility
The IMS ESAF enables users to access DB2 from IMS DM/TM or DBCTL. Specifically for
DB2, it provides support for:

� Connection between the IMS subsystem and one or more DB2 subsystems

� Communication between an IMS control region and DB2 for a command thread (for
issuing DB2 commands in IMS)

� Communication between IMS dependent regions and DB2 for transaction threads (for
enabling and processing SQL calls)

� Communication between IMS Java regions and DB2 for transaction threads (for enabling
and processing SQL calls)

� The SQL application programming interface

� Coordinated sync point processing

IMS application programs using ESAF have concurrent access to the following resource
managers:

– IMS message queue manager (online applications only)
– IMS Full Function database manager
– IMS Fast Path database manager (DBCTL BMPs or online applications only)
– DB2 database manager
– MQSeries® queue manager (local and remote queues)

IMS sync point processing uses a two-phase commit. IMS assumes the role of sync point
coordinator1 and communicates with all the relevant resource managers, including DB2. In
case of a program or system failure, IMS coordinates the backout or recovery of both DB2
and IMS data (messages and databases). See the note under “LOCKSIZE parameter” on
page 189 for another explanation.

IMS also supports read-only threads, which improve the DB2 read-only commit processing by
eliminating the unnecessary Phase 2 call.

Figure 10-1 on page 185 shows the relationship between DB2 and IMS.

1 For a CICS DBCTL transaction, CICS is the sync point coordinator. For a BMP in a DBCTL environment, IMS is the coordinator.

184 IMS Performance and Tuning Guide

Figure 10-1 Relationship between DB2 and IMS

IFP, JMP, and MPP regions identify themselves to DB2 during the initialization phase of their
startup. BMP and JBP regions wait until the first SQL call to identify themselves to DB2.

10.1.1 Subsystem member
The IMS subsystem member execution parameter defines which subsystem member (SSM)
in IMS.PROCLIB is read by IMS when it starts up. The SSM defines which DB2 subsystems
can communicate with this IMS. Each dependent region also has an SSM execution
parameter, indicating which IMS.PROCLIB member defines the DB2 subsystems with which
this region can communicate. This can be the same set or a subset of those defined for the
control region.

The member used by the IMS control region is the default for the dependent regions, which
do not have any SSM specification. If some regions have no need to access DB2, we
recommend that you use an SSM that exists but is empty.

For example, in your IMS environment, you bring up your IMS system defined with the
following parameters: IMSID=IMSF and SSM=DB28. In IMS.PROCLIB, there is an SSM
member named IMSFDB28. This member is defined with the following values:

DB28,SYS1,DSNMIN10,,R,+

IRLM
address space

DDF
address space

Database services
address space

IMS Fast Path
Dependent region
address space

IMS MPP
Dependent region
address space

IMS BMP
Dependent region
address space

IMS Control
region
address space

System
services
address space
+
Stored
Procedures
address space
(since DB2 4.1)

DL/I Batch
address space

IMS DB2 Subsystem
threads

Chapter 10. Performance considerations with DB2 185

These values correspond to the following positional parameters:

SSN,LIT,ESMT,RTT,REO,CRC

Which have the following meanings:

� SSN: DB2 subsystem name

� LIT: Language interface token

� ESMT: External subsystem module table (DSNMIN10 is the required value)

� RTT: User-generated resource translation table (optional)

� REO: Region error option
This option determines the action IMS takes when an application program issues a
request for external subsystem services before connection to the external subsystem is
complete, or if problems are encountered with the external subsystem:

– R: The application program receives a return code indicating that the request for
external subsystem services has failed.

– Q: IMS abnormally ends (ABENDS) the application program with an ABEND code of
U3051.

– A: IMS abnormally terminates the application program with an ABEND code of U3047
and discards the transaction input if the application program has already issued the get
unique (GU) call.

� CRC: Command recognition character, (+) in this case

Refer to “Defining Your External Subsystems to IMS” in IMS Version 9 Installation Volume 2:
System Definition and Tailoring, GC18-7823, for further details. There is also useful
information in the DB2 Universal Database for z/OS Administration Guide, SC18-7413.

Figure 10-2 on page 187 shows the relationship between the SSM and IMS regions (control
and dependent).

186 IMS Performance and Tuning Guide

Figure 10-2 Relationship between SSMs and dependent regions

10.2 Tuning the External Subsystem Attach Facility
When using the ESAF, we recommend that you follow these guidelines:

� Minimize the number of thread allocations and terminations.

� Minimize the duration of locks.

� Avoid defining more external subsystems than needed in the SSM. Each definition adds
storage requirements. Use an empty SSM for regions that do not require access to DB2,
otherwise, the control region SSM is used.

� Consider isolating DL/I applications in IMS dependent regions separate from SQL
applications. This facilitates:

– Performance monitoring and problem isolation
– Selection of scheduling algorithms and class assignments

� Analyze applications to choose between static SQL and dynamic SQL.

� Choose the best security level according to installation requirements.

DSNA DB2

SUBSYSTEM

IMS.PROCLIB

SSMA member:
 DSNA, SYS1,..
 DSNB, SYS2,..

SSMB member:
 DSNA, SYS1,..

SSMC member:
 empty member:

DSNB DB2

SUBSYSTEM

SSM=SSMA

MPPs or BMPsIMS
CONTROL
REGION

Reg. 1

SSM=SSMB

Reg. 2

SSM=SSMC

Reg. 3

SSM=

Chapter 10. Performance considerations with DB2 187

10.2.1 Thread management
Thread creation and termination can use significant amounts of CPU in an IMS/DB2
transaction. To reduce the CPU cost of thread creation at program schedule time (and at
signon to DB2), IMS uses a program call instead of an SVC call and makes use of cell pool
(CPOOL) requests to allocate dynamic storage.

The IMS Monitor, in the Region IWAIT report (Example 10-6 on page 196), shows the time of
the thread creation and termination. It reports them as IWAITs, but they are not I/O IWAITs;
although, the SQL normal call values do, of course, include I/Os.

The simpler the transaction, the proportionally higher the cost of thread creation and
termination. Consequently, CPU time can be saved if the number of thread allocations and
terminations is kept to a minimum. We recommend that you do the following in order to
achieve this:

� Use a specific number of regions connected to the DB2 subsystem.
� Keep threads running as long as possible by exploiting:

– Wait-for-input transactions
– Pseudo-wait-for-input
– Quick reschedule

Fast Path (IFP) regions, which are wait-for-input, create the thread only once.

We recommend that you design for thread reuse as much as possible to spread the cost of
thread creation and termination over multiple transactions. Collapsing multiple MPPs into a
single MPP, if practical, can help.

Wait-for-Input
The IMS Wait-for-Input (WFI) function is the ideal solution for minimizing thread allocations,
because it happens just once when the program is scheduled. However, a region occupancy
of more than approximately 75% is required to fully justify its use.

Pseudo-Wait-for-Input
Pseudo-WFI (PWFI) applies to all message processing programs (MPPs), and IMS/DB2
applications can benefit not only from reduced program load but from reduced DB2 thread
creation as well.

Quick reschedule
Although this is not an option from an IMS perspective, there are two requirements for it:

� The application program must issue a GU call against the I/O PCB after each message is
processed, to drive synchronization point processing. It should terminate on a QC status
code only.

� PROCLIM > 0 must be specified on the TRANSACT macro.

If the program is held, waiting on the I/O PCB GU, and another message arrives for that
transaction, it can be immediately passed to the program, so that the thread to DB2 from the
previous scheduling is still available.

Note: The thread create and terminate processes are executed under the caller’s TCB,
and the CPU time is charged to the IMS dependent region.

188 IMS Performance and Tuning Guide

10.2.2 DB2 lock management
Locking considerations are important for the subsystem’s throughput and performance.
Attention must be paid to when a lock is acquired, which level of lock is used, and when the
lock is released.

Pages, tables, or tablespaces can be locked during an application process in the same
manner as when using IRLM for IMS, and similar to when using PI. The page locks result
from SQL calls and can be compared to the CI locks that result from IMS DL/I calls.

LOCKSIZE parameter
When creating a tablespace, you choose the granularity of locking by specifying the
LOCKSIZE:

� LOCKSIZE(PAGE)

Page locking is the best strategy for concurrency in an online environment. In general, it is
achieved by specifying LOCKSIZE(ANY). However, for WFI transactions, you should
specify LOCKSIZE(PAGE) explicitly.

� LOCKSIZE(ANY)

This is the default granularity level and is the value that we recommend. It implies a
page-level locking strategy. However, if too many page locks are taken for a table, lock
escalation occurs so that a single tablespace lock is acquired instead.

For online processing, lock escalation is undesirable. If locking problems occur with
LOCKSIZE(ANY) because of lock escalation, review the application design, and take sync
points much more frequently.

The exception to the recommendation is for WFI transactions, which should use
tablespaces defined with LOCKSIZE(PAGE). If ANY is specified, and lock escalation takes
place, then locking remains at the tablespace level until program termination (not
transaction termination) which is undesirable; no de-escalation facility exists.

� LOCKSIZE(TABLESPACE) or LOCKSIZE(TABLE)

These are not recommended in an online environment.

� LOCKSIZE(ROW)

For normal transaction processing, no benefit is generally provided by locking rows rather
than pages. Therefore, its use is not recommended unless it is the only way to suppress
locking conflicts.

BIND ACQUIRE parameter
This parameter determines when tablespace intent locks are acquired:

� With ACQUIRE(ALLOCATE), all locks are taken when the PLAN is allocated. This
corresponds to when the thread is created, which in turn occurs at the first SQL call after
IMS program scheduling.

� With ACQUIRE(USE), each tablespace intent lock is acquired individually, as each table
space is first referenced by the application.

Note: In a hybrid IMS and DB2 program, IMS is in control of the sync point processing
through the checkpoint. Therefore, do not issue DB2 commit calls in a hybrid IMS/DB2
program, because they are ignored by DB2 if issued. You must use IMS checkpoint calls to
perform synchronization processing for both DB2 and IMS to free up locks.

Chapter 10. Performance considerations with DB2 189

If most of the tables included in a PLAN are actually referenced at each execution, then we
recommend that you use ACQUIRE(ALLOCATE), which is best. A locking problem with any
tablespace is recognized before any work is done. With ACQUIRE(ALLOCATE), the first
transaction pays the full cost. ACQUIRE(ALLOCATE) is useful for IMS WFI transactions.

If some tables are not referenced in every execution, then we recommend that you use
ALLOCATE(USE), because this is the most efficient technique.

BIND RELEASE parameter
This parameter determines when tablespace locks are released. Page locks or row locks are
released during message processing or at sync point time, exactly as for IMS IRLM locks. The
RELEASE parameter can have a significant effect on performance:

� With RELEASE(DEALLOCATE), the tablespace locks are released when the PLAN is
deallocated (in other words, when the IMS program terminates).

� With RELEASE(COMMIT), the tablespace locks are released at each sync point.

RELEASE(COMMIT) can have a severe performance impact as plan resources (tablespace
locks, cursor sections, or DB2 DBDs) are released at sync point and have to be reacquired if
the same IMS program continues processing the next message. Consequently, we
recommend that you use RELEASE(DEALLOCATE), which is the default. However, this
option causes contention on the application, because locks are held across messages.

BIND ISOLATION parameter
This parameter determines when shared page locks are released:

� At commit time, Repeatable Reads (RR) are requested with ISOLATION(RR). This is
similar to accessing a DL/I segment with a Q command code in the SSA. It prevents any
updates from gaining access to the page, but it increases the number of concurrent locks
held by the transaction.

� When the position moves off the page, if Cursor Stability (CS) is requested with
ISOLATION(CS). This is the same as standard record locking in IMS; when the PCB
position moves to a new root, the previous root is unlocked (if not updated).

� The fewest locks are acquired when you use Uncommitted Read (UR), ISOLATION(UR). It
is fast and causes little contention, but it reads uncommitted data just like a PROCOPT of
GOx.

Unless the application has a specific need for referenced data to remain unchanged, our
recommendation is to use ISOLATION(CS) or ISOLATION(UR).

For queries that do not update, we recommend that you always code FOR READ ONLY WITH
UR on the query.

BIND CURRENT DATA parameter
DB2 has a lock-avoidance facility that is equivalent to PROCOPT=GOx in IMS. The parameter
values are:

� CURRENT DATA(YES): Take locks
� CURRENT DATA(NO): Take no locks

This function provides DB2 with a dirty read capability. When using CURRENT DATA(NO) in
the BIND, DB2 does not lock before a read.

Note: If you are using DB2 packages, you cannot choose. ACQUIRE(USE) is forced.

190 IMS Performance and Tuning Guide

In DB2, it is not always possible to specify the update intention in the EXEC SQL SELECT
call. Therefore, the use of CURRENT DATA(NO) can be dangerous and can cause integrity
exposures when two programs attempt to update the same data without locking it at read
time.

For more details, refer to the DB2 Universal Database for z/OS Administration Guide,
SC18-7413.

10.2.3 DB2 free space

DB2 uses free space in a tablespace just like IMS uses free space in a database. There can
be x percentage free on a DB2 page (which is the same thing as an IMS OSAM block or a
VSAM CI), and so many pages left empty after a load or reorganization. In order to insert
efficiently, there must be free space in the tablespace. The same concept on free space for
IMS applies to DB2. See 5.6, “Free space” on page 70 for a detailed discussion about the use
of free space.

10.2.4 Static as opposed to dynamic SQL
In this section, we cover the performance differences between static and dynamic SQL.

Static SQL
With static SQL, SQL statements are embedded within a program and are prepared during
the program preparation process before program execution. After the statements are
prepared, they do not change, although the values of the host variables specified by the
statements might change.

For best performance, we recommend that you use static SQL for conventional predefined
transactions or programs. Static SQL avoids the EXEC SQL PREPARE overhead for access
path selection.

Dynamic SQL
With dynamic SQL, the SQL source is contained in host language variables and not coded
explicitly into the application program. When the program is executed, the SQL code can be
varied or dynamically created before being executed.

In a transaction processing environment, the use of dynamic SQL usually has a negative
impact on performance.

If dynamic SQL must be used, we recommend that you try to avoid multiple PREPAREs. If the
statement is going to be used only once, it is better to code EXEC SQL EXECUTE
IMMEDIATE. If the statement is going to be executed several times, possibly with different
values, it is better to code EXEC SQL PREPARE once and code EXEC SQL EXECUTE with
placement marker substitution.

10.2.5 Security controls
Security controls occur at various stages of processing, depending on the system definition
and the security product you use (RACF, for example). The following security controls are
frequently used:

� IMS authorization to access protected data sets
� IMS authorization to connect to DB2 subsystem
� User authorization to sign on to IMS
� User authorization to access an IMS transaction

Chapter 10. Performance considerations with DB2 191

� User authorization to sign on to DB2
� User authorization to submit IMS or DB2 commands

Security verification tasks affect performance. We recommend that you use the minimum
level of security that meets all your security requirements.

10.3 Multi-row FETCH and INSERT

Multi-row fetch eliminates frequent trips between the application and the database engine. A
single fetch statement can retrieve numerous rows of data from the result table of a query as
a rowset (a rowset is the set of rows that is retrieved through a multi-row fetch). When the
cursor is positioned on a rowset, the rows belonging to the rowset can be updated or deleted.

Explicit multi-row FETCH, INSERT, cursor UPDATE, and cursor DELETE can improve
performance with a reduction of CPU consumption if a program processes a considerable
number of rows. Depending on each particular case, a number between 10 rows and 100
rows per SQL can be an advantageous starting point for multi-row operations.

You need to define host variable array declaration of the cursor with rowset positioning and
the text of the SQL to specify the rowset size.

You also have to modify your coding regarding how to perform cursor processing. You need to
look at how many rows are returned on a FETCH using the SQERRD3 flag in the SQLCA
area in your program.

Multi-row FETCH, INSERT, cursor UPDATE, and cursor DELETE are invoked by adding the
general statement of “FOR x ROWS” to your SQL. Refer to the current version of the DB2
SQL Reference for the exact syntax and details about using “FOR x ROWS.”

10.4 Tools for monitoring
All the products that are normally used for separate IMS and DB2 subsystems can be
implemented to monitor the system when IMS and DB2 are used together. The primary
monitoring products are:

z/OS Tools
Resource Measurement Facility III (RMF) that monitors the physical resource utilization of the
subsystem environment.

IMS Tools
Following are the IMS Tools available:

� IMS Performance Analyzer

IMS Performance Analyzer provides different reports with information about the ESAF.

� IMS Monitor

The IMS Monitor traces all IMS interactions with DB2, such as thread creation, signon,
SQL calls, commit, and thread termination.

� IMS ESAF SNAP records and traces

When a deadlock situation occurs in DB2, an x’67FF’ record is written to IMS log. The
DFSERA10 and DFSERA30 modules can be used to report this deadlock information.
See 10.4.3, “Deadlock report” on page 198 for an example.

192 IMS Performance and Tuning Guide

� IMS SSR command

IMS SSR command allows the operator to route DB2 DISPLAY commands to the desired
DB2 subsystem in order to display the DB2 status, database status, usage of buffer pools,
and locks to be observed as they stand at one point in time. Refer to Example 10-1.

Example 10-1 SSR command

/SSR - DISPLAY THREAD (*)
/SSR - DISPLAY DATABASE(xxxx) SPACE(*) RESTRICT
/SSR - DISPLAY DATABASE(xxxx) SPACE(*) LOCKS
/SSR - DISPLAY BUFFERPOOL (*)

DB2 Tools
An exhaustive analysis of the DB2 performance tools and details about the different
capabilities that each tool provides can be found in the IBM Redbook, New Tools for DB2 for
OS/390 and z/OS Presentation Guide, SG24-6139.

� DB2 Performance Monitor (DB2PM)

DB2PM is a performance tool with all the capabilities that you might need when verifying
and monitoring the critical performance elements of the DB2 environment.

It includes a variety of customized reports for in-depth performance analysis and
exception reporting. Reports are produced from DB2 statistics, accounting, and
performance trace data collected in the System Management Facility (SMF), GTF, or user
files. An online monitor provides an immediate snapshot view of applications and DB2
activities through ISPF menus and panels. The Explain function is useful to analyze and
optimize SQL statements.

� SQL Performance Analyzer

The purpose of this tool is to help database users, developers, and administrators assess
the SQL performance problems. It provides realistic costs and resource usage for DB2
SQL statements without having to execute them and incorporates warnings, alerts, and
recommendations for the queries.

� DB2 Query Monitor Tool (QM)

This is a thread monitoring tool, which reports all dynamic and static SQL queries issued
as well as commands and utilities executed. QM complements DB2PM and includes three
major facilities: dynamic monitoring, problem detection, and determination and analysis of
historical data.

� DB2 Trace Facility

Using the DB2 trace, subsystem data and events related to performance or accounting
can be recorded for further use by other print programs.

10.4.1 IMS Performance Analyzer
IMS Performance Analyzer produces two different reports related to the ESAF:

� IMS Performance Analyzer ESAF (Log) report

Provides a chronological listing of all the external subsystem connects and disconnects.

� External Subsystem: Region Detail and External Subsystem: Program Detail sections of
IMS Performance Analyzer ESAF (Monitor) report´

A detailed analysis of external subsystem activity in regions and by application programs
can be obtained by means of this report. It is useful to determine what percentage of time

Chapter 10. Performance considerations with DB2 193

the transactions are spending inside DB2. Refer to Example 10-2 and Example 10-3 for
examples of both these reports.

Example 10-2 IMS Performance Analyzer ESAF (Monitor) report (External Subsystem: Region Detail)

Report from 25Aug2006 09.34.16.61 IMS 9.1.0 IMS Performance Analyzer 4.1 Report to 25Aug2006 09.40.23.13

 External Subsystem: Region Detail

 From 25Aug2006 9.35.02.62 To 25Aug2006 9.40.04.70 Elapsed= 0 Hrs 5 Mins 02.080.071 Secs

 ----------- Subsystem Calls ---------- -- Transaction --
 Rgn Avg Elapse Max Elapse Avg Elapse Calls Pct
 No. SSID Function Mod Count Sc.Mil.Mic Std Dev Sc.Mil.Mic Count Sc.Mil.Mic /Tran Elaps

 6 DB24 Normal Call PR0 521 0.436 4.470 22.417 51 38.102 10.2 11.68%
 Signon SO0 48 6.547 0.173 10.946 0.9 16.17%
 Create Thread CT0 46 6.755 6.176 286.629 0.9 15.99%
 Commit Ph1 P10 48 0.476 2.008 5.848 0.9 1.18%
 Commit Ph2 P20 3 2.539 0.076 2.795 0.1 0.39%
 Term Thread D50 46 0.949 0.650 4.442 0.9 2.25%
 ** Total ** 712 1.301 8.415 286.629 14.0 47.66%

 9 DB24 Normal Call PR0 667 0.320 4.144 25.612 73 25.512 9.1 11.45%
 Signon SO0 71 7.079 0.304 21.825 1.0 26.99%
 Create Thread CT0 68 1.192 3.950 39.602 0.9 4.35%
 Commit Ph1 P10 71 0.409 1.750 4.818 1.0 1.56%
 Commit Ph2 P20 4 2.662 0.128 3.116 0.1 0.57%
 Term Thread D50 68 0.952 0.404 2.281 0.9 3.48%
 ** Total ** 949 0.950 2.652 39.602 13.0 48.40%

 12 DB24 Normal Call PR0 835 0.669 4.570 34.434 65 35.284 12.8 24.35%
 Signon SO0 64 7.006 0.328 21.814 1.0 19.55%
 Create Thread CT0 64 2.502 4.423 77.734 1.0 6.98%
 Commit Ph1 P10 64 0.457 1.395 3.590 1.0 1.27%
 Commit Ph2 P20 4 2.541 0.113 2.824 0.1 0.44%
 Term Thread D50 64 0.962 0.363 2.605 1.0 2.68%
 ** Total ** 1095 1.158 3.555 77.734 16.8 55.29%

Example 10-3 IMS Performance Analyzer ESAF (Monitor) report (External Subsystem: Program Detail)

Report from 25Aug2006 09.34.16.61 IMS 9.1.0 IMS Performance Analyzer 4.1 Report to 25Aug2006 09.40.23.13

 External Subsystem: Program Detail

 From 25Aug2006 9.35.02.62 To 25Aug2006 9.40.04.70 Elapsed= 0 Hrs 5 Mins 02.080.071 Secs

 ----------- Subsystem Calls ---------- -- Transaction --
 Rgn Avg Elapse Max Elapse Avg Elapse Calls Pct
 No. PSBname Trancode SSID Function Mod Count Sc.Mil.Mic Std Dev Sc.Mil.Mic Count Sc.Mil.Mic /Tran Elaps

 6 PFZPP04 PFZUP04 DB24 Normal Call PR0 1 0.544 0.000 0.544 1 12.265 1.0 4.44%
 Signon SO0 1 5.635 0.000 5.635 1.0 45.94%
 Create Thread CT0 1 0.493 0.000 0.493 1.0 4.02%
 Commit Ph1 P10 1 0.194 0.000 0.194 1.0 1.58%
 Term Thread D50 1 0.708 0.000 0.708 1.0 5.77%
 ** Total ** 5 1.515 1.364 5.635 5.0 61.75%

 6 PFZPP05 PFZUP05 DB24 Normal Call PR0 515 0.438 4.470 22.417 48 39.957 10.7 11.77%
 Signon SO0 46 6.574 0.174 10.946 1.0 15.77%
 Create Thread CT0 44 7.040 6.056 286.629 0.9 16.15%
 Commit Ph1 P10 46 0.488 1.997 5.848 1.0 1.17%
 Commit Ph2 P20 3 2.539 0.076 2.795 0.1 0.40%
 Term Thread D50 44 0.963 0.652 4.442 0.9 2.21%
 ** Total ** 698 1.304 8.474 286.629 14.5 47.46%

 9 PFZPP05 PFZTHALT DB24 Normal Call PR0 353 0.316 4.409 25.612 33 19.446 10.7 17.37%
 Signon SO0 33 7.359 0.376 21.825 1.0 37.85%
 Create Thread CT0 33 0.667 0.777 2.698 1.0 3.43%
 Commit Ph1 P10 33 0.277 0.278 0.415 1.0 1.42%
 Term Thread D50 33 1.015 0.436 2.281 1.0 5.22%
 ** Total ** 485 0.864 2.610 25.612 14.7 65.28%

 9 PFZPP05 PFZUP05 DB24 Normal Call PR0 251 0.222 2.068 6.243 28 15.416 9.0 12.91%

194 IMS Performance and Tuning Guide

 Signon SO0 27 6.453 0.096 8.402 1.0 40.36%
 Create Thread CT0 24 0.559 0.485 1.715 0.9 3.11%
 Commit Ph1 P10 27 0.360 1.372 2.121 1.0 2.25%
 Commit Ph2 P20 2 2.647 0.177 3.116 0.1 1.23%
 Term Thread D50 24 0.882 0.356 1.958 0.9 4.90%
 ** Total ** 355 0.787 2.168 8.402 12.7 64.77%

 12 PFZPP01 PFZUP01 DB24 Normal Call PR0 5 0.417 0.108 0.476 5 31.578 1.0 1.32%
 Signon SO0 5 8.047 0.309 12.859 1.0 25.48%
 Create Thread CT0 5 0.515 0.095 0.612 1.0 1.63%
 Commit Ph1 P10 5 0.187 0.095 0.213 1.0 0.59%
 Term Thread D50 5 0.743 0.130 0.897 1.0 2.35%
 ** Total ** 25 1.982 1.632 12.859 5.0 31.38%

 12 PFZPP05 PFZTHALT DB24 Normal Call PR0 720 0.706 4.592 34.434 50 24.942 14.4 40.74%
 Signon SO0 50 6.931 0.350 21.814 1.0 27.79%
 Create Thread CT0 50 0.592 0.517 2.167 1.0 2.37%
 Commit Ph1 P10 50 0.320 0.411 0.876 1.0 1.28%
 Term Thread D50 50 0.985 0.361 2.605 1.0 3.95%

10.4.2 IMS Monitor
The IMS Monitor provides statistics about these significant DB2 events:

� Service calls, such as create thread, signon, commit Phase 1, commit Phase 2, and
terminate thread

� Normal SQL calls

� Command calls using the IMS /SSR command

The information is reported by subsystem, region, or PSB. You get the number of occurrences
of each type of call and their elapsed time. Each call is one IWAIT (the NOT-IWAIT time is
always zero).

Examples are shown in:

� Example 10-4:

IMS Monitor Region Summary report showing DB2 Service and Command Calls

� Example 10-5 on page 196:

IMS Monitor Region Summary report showing DB2 Normal Calls

� Example 10-6 on page 196:

IMS Monitor Region IWAIT report showing DB2 IWAIT

� Example 10-7 on page 196:

IMS Monitor Program I/O report showing DB2 IWAIT

� Example 10-9 on page 197:

IMS Monitor Call Summary report showing DB2 Calls

Example 10-4 IMS Monitor Region Summary report (DB2 Service and Command Calls)

IMS MONITOR *** REGION SUMMARY *** TRACE START 2006 270, 09:23:51 TRACE STOP 2006 270, 09:31:00

 ELAPSED TIME......... NOT IWAIT TIME(ELAPSED-IWAIT)
 OCCURRENCES TOTAL MEAN MAXIMUM TOTAL MEAN MAXIMUM

DB24 SERVICE AND COMMAND CALLS
**REGION 6 217 592332 2729 65545
**REGION 9 231 580401 2512 71352

Chapter 10. Performance considerations with DB2 195

**REGION 12 98 319788 3263 88558
**REGION 14 224 542121 2420 32179
**REGION 15 226 614990 2721 65914
**REGION 18 223 603638 2706 61631
**REGION 20 223 504183 2260 19741
**REGION 22 246 773047 3142 84968
**REGION 23 226 528254 2337 30231
**TOTALS 1914 5058754 2643

Example 10-5 IMS Monitor Region Summary report (DB2 Normal Calls)

IMS MONITOR *** REGION SUMMARY *** TRACE START 2006 270, 09:23:51 TRACE STOP 2006 270, 09:31:00

 ELAPSED TIME......... NOT IWAIT TIME(ELAPSED-IWAIT)
 OCCURRENCES TOTAL MEAN MAXIMUM TOTAL MEAN MAXIMUM

DB24 NORMAL CALLS
**REGION 6 568 1031731 1816 126262
**REGION 9 537 668054 1244 87589
**REGION 12 148 338185 2285 46117
**REGION 14 532 363598 683 35583
**REGION 15 614 337343 549 34882
**REGION 18 531 298572 562 30289
**REGION 20 476 569527 1196 39248
**REGION 22 703 731782 1040 43733
**REGION 23 530 167065 315 25978
**TOTALS 4639 4505857 971

Example 10-6 IMS Monitor Region IWAIT report (DB2 IWAIT)

IMS MONITOR *** REGION IWAIT *** TRACE START 2006 270, 09:23:51 TRACE STOP 2006 270, 09:31:00

 IWAIT TIME..........
**REGION 6 OCCURRENCES TOTAL MEAN MAXIMUM FUNCTION MODULE

DB24 CALLS
 50 57193 1143 8406 TERM THRD D50
 57 26873 471 4156 COMMIT PH.1 P10
 568 1031731 1816 126262 NORMAL CALL PR0
 50 97383 1947 65545 CREATE THRD CT0
 57 403211 7073 13593 SIGNON SO0
 3 7672 2557 3430 COMMIT PH.2 P20
...TOTAL... 785 1624063 2068

Example 10-7 IMS Monitor Program I/O report (DB2 IWAITs)

Example 10-8

IMS MONITOR *** PROGRAM I/O *** TRACE START 2006 270, 09:23:51 TRACE STOP 2006 270, 09:31:00

 IWAIT TIME..........
PSBNAME PCB NAME IWAITS TOTAL MEAN MAXIMUM DDN/FUNC MODULE

PFZPP05 I/O PCB 35 46740 1335 3606 DHZDSZP1 DBH
 1 1001 1001 1001 GMZDTRP3 DBH

 PCB TOTAL 36 47741 1326

196 IMS Performance and Tuning Guide

 GMZDTRP3 1 13094 13094 13094 GMZDTRP3 DBH

 PCB TOTAL 1 13094 13094

 DHZDSZP1 1 10423 10423 10423 DHZDSZP1 DBH

 PCB TOTAL 1 10423 10423

 DB24 413 435756 1055 21756 TERM THRD D50
 448 170370 380 4372 COMMIT PH.1 P10
 4408 4094602 928 126262 NORMAL CALL PR0
 413 312777 757 65545 CREATE THRD CT0
 448 3474268 7755 71352 SIGNON SO0
 16 37916 2369 3430 COMMIT PH.2 P20

 SUBSYS TOTAL 6146 8525689 1387

Example 10-9 IMS Monitor Call Summary report (DB2 Calls)

IMS MONITOR *** CALL SUMMARY *** TRACE START 2006 270, 09:23:51 TRACE STOP 2006 270, 09:31:00

 CALL LEV STAT IWAITS/ ..ELAPSED TIME... .NOT IWAIT TIME..
PSB NAME PCB NAME FUNC NO.SEGMENT CODE CALLS IWAITS CALL MEAN MAXIMUM MEAN MAXIMUM

PFZPP05 I/O PCB ASRT () 419 0 0.00 1118 21874 1118 21874
 GU () QC 419 31 0.07 5293 340720 5193 340720
 ISRT () 457 0 0.00 152 21879 152 21879
 CHNG () 28 0 0.00 1545 14345 1545 14345
 PURG () 28 0 0.00 70 1092 70 1092
 (GU) () 419 0 0.00 14 480 14 480
 GU () 38 5 0.13 4516 9354 4354 9354

 I/O PCB SUBTOTAL 1808 36 0.01 1647 1621

 GMZDSZP1 REPL (02)GMZSSZRN 19 0 0.00 777 13036 777 13036
 GU (02)GMZSSZRN 28 0 0.00 93 833 93 833
 REPL (01)GMZSSZ00 19 0 0.00 46 181 46 181
 GU (01)GMZSSZ00 31 0 0.00 86 467 86 467
 GN (01)GMZSSZ00 GE 53 0 0.00 20 41 20 41
 REPL (02)GMZSSZT2 32 0 0.00 32 56 32 56
 GN (02)GMZSSZT2 90 0 0.00 28 142 28 142
 GU (02)GMZSSZT2 90 0 0.00 112 3365 112 3365
 ISRT (02)GMZSSZT2 12 0 0.00 84 208 84 208
 DLET (02)GMZSSZT2 12 0 0.00 1094 11628 1094 11628
 ISRT (02)GMZSSZRN 1 0 0.00 89 89 89 89
 GU (01)GMZSSZ00 GE 1 0 0.00 31 31 31 31
 ISRT (01)GMZSSZ00 1 0 0.00 135 135 135 135
 GU (00) GE 1 1 1.00 10534 10534 111 111

 DL/I PCB SUBTOTAL 390 1 0.00 155 128

 DHZDKSP1 GU (01)DHZSKS00 218 0 0.00 66 1931 66 1931
 GNP (02)DHZSKSTR 839 0 0.00 44 12208 44 12208

 DL/I PCB SUBTOTAL 1057 0 0.00 48 48

 DHZDTRP3 ISRT (01)DHZSTR00 1 1 1.00 13544 13544 450 450

 DL/I PCB SUBTOTAL 1 1 1.00 13544 450

Chapter 10. Performance considerations with DB2 197

 DB24 TERM THRD OK 413 413 1.00 1055 21756 0 0
 COMMIT PH.1 OK 448 448 1.00 380 4372 0 0
 NORMAL CALL OK 4408 4408 1.00 928 126262 0 0
 CREATE THRD OK 413 413 1.00 757 65545 0 0
 SIGNON OK 448 448 1.00 7755 71352 0 0
 COMMIT PH.2 OK 16 16 1.00 2369 3430 0 0

 SUBSYS SUBTOTAL 6146 6146 1.00 1387 0

 PSB TOTAL 9402 6184 0.65 1237 322

10.4.3 Deadlock report

When DB2 detects a deadlock, the ESAF message handler directs the IMS ILOG macro to
log a x’67FF’ SNAP trace record to identify the problem, and the application ABENDs with a
U0777. Also, a DFS3624I message is issued prior to the ABEND of the dependent region.

This information is reported on the Deadlock report of the File Select and Formatting Print
utility (DFSERA10). The Record Format and Print Module (DFSERA30) is needed to format
the DEADLOCK report. When DFSERA30 encounters a deadlock block, it prints the block
and produces a report based on the data in the block.

See Example 10-10 for a typical DB2 Deadlock report. See Example 10-11 on page 199 for a
typical IMS Deadlock report. Note that the hexadecimal data from the log was removed from
this example.

Example 10-10 DB2 deadlock report

* THIS ROUTINE WILL LOOK FOR LOG RECORD X'67FF' AND THE NAME OF *
* THE BLOCK THAT STARTS WITH DEADLOCK. IT WILL THEN BE RUN *
* THROUGH DFSERA30 TO PRINT A NICE REPORT. *

CONTROL CNTL STOPAFT=EOF
OPTION PRINT OFFSET=05,FLDTYP=X,VALUE=67FF,FLDLEN=2,COND=M
OPTION PRINT OFFSET=33,FLDTYP=C,VALUE=DEADLOCK,FLDLEN=8,COND=E, X
 EXITR=DFSERA30
END
DFSERA30 - FORMATTED LOG PRINT

PSEUDO ABEND RECORD ABEND NO = 0777 RECNO = 0583D971 TIME 16:05:00.1 DATE 2006.270

DEADLOCK

EXTERNAL SUBSYSTEM DB28 DETECTED A DEADLOCK DURING NORMAL CALL
REGION TYPE : MPP
REGION NUMBER : 004B
JOB NAME : IMSFMSGK
PSB NAME : SASPR100
SMB NAME : SASPR100
RECOVERY TOKEN: C9D4D7C640404040000E2A8800000000

DEADLOCK ANALYSIS REPORT - END OF REPORT

198 IMS Performance and Tuning Guide

Example 10-11 IMS deadlock report

* THIS ROUTINE WILL LOOK FOR LOG RECORD X'67FF' AND THE NAME OF *
* THE BLOCK THAT STARTS WITH DEADLOCK. IT WILL THEN BE RUN *
* THROUGH DFSERA30 TO PRINT A NICE REPORT. *

CONTROL CNTL STOPAFT=EOF
OPTION PRINT OFFSET=05,FLDTYP=X,VALUE=67FF,FLDLEN=2,COND=M
OPTION PRINT OFFSET=33,FLDTYP=C,VALUE=DEADLOCK,FLDLEN=8,COND=E, X
 EXITR=DFSERA30
END

DFSERA30 - FORMATTED LOG PRINT

PSEUDO ABEND RECORD ABEND NO = 0777 RECNO = 0583EE8C TIME 16:05:02.2 DATE 2006.270

<... for illustration purposes part of the report was removed here ...>

DEADLOCK ANALYSIS REPORT - LOCK MANAGER IS PI
...

RESOURCE DMB-NAME LOCK-LEN LOCK-NAME - WAITER FOR THIS RESOURCE IS VICTIM
01 OF 02 GRVDBOP1 08 014A05D400210140

KEY FOR RESOURCE IS FROM DELETE WORK AREA
KEY=(WI74907 123765976)

 IMS-NAME TRAN/JOB PSB-NAME PCB--DBD PST# RGN CALL LOCK LOCKFUNC STATE
WAITER IMSF GRVPR200 GRVPR200 GRVDBOP1 00074 MPP DLET GRIDX 30400378 03
BLCKER IMSF GRVPR400 GRVPR400 -------- 00093 MPP ---- ----- -------- 03
...

RESOURCE DMB-NAME LOCK-LEN LOCK-NAME
02 OF 02 GRVDBOP1 08 0149E6E400210140

LOCKING ON NEXT HIDAM ROOT FOR GN CALL, KEY DISPLAYED IS FOR PRIOR HIDAM ROOT
KEY=(WI74883 123765976)

 IMS-NAME TRAN/JOB PSB-NAME PCB--DBD PST# RGN CALL LOCK LOCKFUNC STATE
WAITER IMSF GRVPR400 GRVPR400 GRVDBOP1 00093 MPP GET GRIDX 30400378 03
BLCKER IMSF GRVPR200 GRVPR200 -------- 00074 MPP ---- ----- -------- 03

DEADLOCK ANALYSIS REPORT - END OF REPORT

10.5 When to reorganize your DB2 tablespace or indexspace

There are several indicators from the DB2 catalog that indicate when to reorganize a
tablespace or indexspace. RUNSTATS needs to be run on a regular basis after tables have

Chapter 10. Performance considerations with DB2 199

been populated and are in their “general” production state. We suggest that you run REBIND
after all of the reorganizations are completed for the application.

10.5.1 Tablespace

One of the indicators that a tablespace needs reorganizing is when NEAROFFPOSF divided
by CARDF from SYSIBM.SYSINDEXPART is greater than 10% on the primary index for a
tablespace. Another indicator is when FAROFFPOSF divided by CARDF from
SYSIBM.SYSINDEXPART is greater than 10% on the primary index for a tablespace.

The CLUSTERRATIO from SYSIBM.SYSINDEXES on the primary index for a tablespace has
several guidelines. If CARDF from SYSIBM.SYSINDEXPART is greater than 1 but less than
30 000, then the cluster ratio should be 100%. More than 30 000 but fewer than 500 000
rows, a 99% cluster ratio or better is suggested. If there are more than 500 000 but fewer than
10 000 000 rows, then the endorsed cluster ratio is 98% or better. When you get in the range
of more than 10 000 000 rows but fewer than 100 000 000 rows, then the cluster ratio should
not fall below 97%. A 95% cluster ratio or better is acceptable for more than 100 000 000
rows.

There are two parameters on the reorganization utility that you can specify to reorganize a
tablespace. One is taken from the DB2 catalog table SYSIBM.SYSINDEXPART. The
OFFPOSLIMIT, which is the percentage of the NEAROFFPOSF plus the FAROFFPOSF
divided by the CARDF, should be less than 10%. The other parameter on the reorganization
utility is the INDREFLIMIT, which is the NEARINDREF plus the FARINDREF divided by the
CARDF from SYSIBM.SYSTABLEPART, and its percentage should be less than 10%.

The dropped percentage from SYSIBM.SYSTABLEPART should be 10% or less; otherwise, it
is time to reorganize.

10.5.2 Indexspace

Indexspaces should be reorganized when the LEAFDIST from SYSIBM.SYSINDEXPART is
greater than 200. Also, when LEAFFAR times three plus LEAFNEAR from
SYSIBM.SYSINDEXPART is divided by NLEAF from SYSIBM.SYSINDEXES and that value
is greater than 20, it is time to reorganize the indexspace.

Indexspaces should also be reorganized when the PSEUDO_DEL_ENTRIES from
SYSIBM.SYSINDEXPART divided by the CARDF column from SYSIBM.SYSINDEXPART
percentage is greater than 10.

10.6 More information

For more information about DB2 performance, see DB2 UDB for z/OS Version 8 Performance
Topics, SG24-6465.

200 IMS Performance and Tuning Guide

Chapter 11. IMS Parallel Sysplex
considerations

With Parallel Sysplex, there are several additional factors which you must take into
consideration for IMS performance. Some of these are typically outside the control of the IMS
systems programmer but must be understood anyway. We document these considerations in
this chapter.

This chapter covers the following topics:

� CF hardware and microcode
� Structure sizing
� IRLM considerations
� System-managed duplexing
� OSAM and VSAM cache structures
� Application considerations
� Shared VSO
� Shared queues considerations

11

© Copyright IBM Corp. 2006. All rights reserved. 201

11.1 Hardware and microcode

The Coupling Facilities can have a significant impact on IMS performance. Depending on
your particular hardware configuration, you might need to use certain functions to maintain
high availability, which are less than ideal for performance.These facilities include
system-managed duplexing and the use of staging data sets for the MVS system logger.
These things are discussed more in this chapter.

11.1.1 Coupling Facility configuration

Coupling Facilities can be part of the same physical box as the z/OS LPAR or they can be
stand-alone boxes. If they are stand-alone boxes, you might generally be able to achieve high
availability without having to use system-managed duplexing or staging data sets. If the CF
LPARS are on the same physical box as the z/OS images running IMS, then it might be
necessary to use these functions to prevent a loss of integrity. A few other things to be aware
of in a production environment are:

� Dynamic dispatching for the CF LPAR might cause poor or erratic CF response times.

� Multiple CF engines, even when utilization is relatively low, can help keep response times
more stable.

� Multiple CF links not only help availability but also benefit performance.

11.1.2 Coupling Facility microcode

New levels of CF microcode generally introduce new capabilities. Some of these new
functions can take up additional control storage so that there might be less storage available
for user data in the same size structure. The good news is that except for preloaded VSO, the
microcode changes rarely cause any failures and IMS continues to run. The bad news is that
your IMS performance could suffer because of something you might not even know about. For
this reason, you should make sure your systems people let you know any time there is a
change to the CF microcode or the configuration. Make sure you know how to obtain and read
the RMF CF Structure Activity reports and keep a repository of these reports for future
reference in the event of problems.

11.2 Structure sizing

Individual structure sizing considerations are discussed later in this chapter, but for all IMS
structures as well as other system and subsystem structures, you might reference the
following IBM Web site:

http://www.ibm.com/servers/eserver/zseries/cfsizer

If you click IMS, you can select any or all of the IMS-related structures to estimate the size.
This Web site normally calculates the size based on the most current CFLEVEL available,
which is displayed in the results page. Structure sizes are always a multiple of 256K so if you
specify a size, which is not a multiple of 256K, the system rounds it up to the next 256K
increment.

11.3 IRLM considerations

A couple of IRLM startup parameters need to be considered for IRLM performance:

202 IMS Performance and Tuning Guide

http://www.ibm.com/servers/eserver/zseries/cfsizer
http://www.ibm.com/servers/eserver/zseries/cfsizer
http://www.ibm.com/servers/eserver/zseries/cfsizer

� PC=YES or NO

IMS continues to support the use of IRLM 2.1 at this point in time, which allows the
specification of either value. IRLM 2.2 allows either value to be specified but always runs
with PC=YES regardless of the setting. Many years ago specifying PC=NO could have
some impact on IRLM CPU usage but with today’s processors, there is very little
difference in CPU and removing the lock table from ECSA helps free up valuable common
storage.

� DEADLOK=

Using values less than 1 second for DEADLOK have little impact on CPU but might be
very beneficial by resolving deadlocks quickly, because there are typically hundreds of
transactions running every second. Waiting a second or more to resolve a deadlock can
back up transaction processing significantly, which might result in other undesirable
conditions.

� MAXUSRS=

MAXUSRS value determines the size of each entry in the lock table, which can be 2, 4, or
8 bytes. MAXUSRS represents the number of IRLMs that you expect to have in the data
sharing group. Any number up to 7 causes each entry to be 2 bytes, 8 through 23 create
4-byte entries, and numbers greater than 23 create 8-byte entries. As you can see, this
number directly affects the number of lock entries in a given size structure, so use the
smallest number (or something in the ranges mentioned) that meets your needs.

� LTE=

LTE value lets you override the IRLM default calculation of 1/2 of the lock structure is for
LTEs. The number specified is multiplied by 1 048 576. Be careful specifying this value,
because it is possible to severely restrict the number of record list entries and possibly
cause tasks to fail. If more LTEs are necessary to reduce false contention, then it is usually
better to increase the size of the lock structure. See below for more information.

F irlmproc,SET,TIMEOUT=nnnn,dbms
Use this command to establish a time after which IMS is notified that some tasks have been
waiting for a lock longer than the time specified and also to create a 79.15 SMF record along
with a DXR162I message issued by the IRLM. If no command is issued, then the default is 300
seconds (five minutes), which is probably longer than it takes for the phone to start ringing.
Note that you must issue this command for each IMS, and it must be after IMS has identified
to the IRLM.

LOCKTIME= in the DFSVSMxx member of IMS PROCLIB
This value interacts with the TIMEOUT value mentioned above. LOCKTIME, if specified,
overrides the default value of 300 seconds; however, there is an important difference between
specifying here as opposed to using the IRLM command. If LOCKTIME is specified, then any
applications waiting longer than the specified time are abended with a U3310 or given a BA
status code. This might or might not be the result you want. You can change the time using
the IRLM SET command, but you cannot change the action (abend or status code) without a
restart of IMS.

TRACE=NO should be set from a pure performance perspective. If there are locking
problems, then having the trace information is probably worth the cost.

WLM for IRLM
WLM should be set up to put IRLM in SYSSTC, SYSTEM, or at least a performance group
with similar settings. Most of the IRLM locking code is run under the dependent region TCB,
and the times when IRLM must be dispatched are for contention and deadlock resolution in

Chapter 11. IMS Parallel Sysplex considerations 203

which case you want IRLM to be dispatched as quickly as possible, because any delay can
have a global (sysplex-wide) effect.

11.4 IRLM lock structure

IMS uses the IRLM to manage locks in a block level data sharing environment. The IRLM
uses a lock structure to manage lock requests from its IMS clients.

11.4.1 Lock structure size

The size of the lock structure is defined in the CFRM policy. By default, the IRLM makes half
of the structure for LTEs. Because of this, we recommend that the size specified is also a
power of 2 and that any increases then are double or four times the original amount. A
reasonable starting size for production is probably 64 MB. That means 32 MB for LTEs, and if
there are two-byte entries, then there are 16 million LTEs.

11.4.2 False contention

Monitor false contention with RMF and adjust the size of the structure. We recommend the
number for false contention is 1/10 of 1 percent. This number might or might not be
achievable, because much is dependent on the workload. If higher than 0.1 percent, you can
try increasing the size of the structure to reduce this; however, remember that you should
always increase by doubling the size. There is normally a point of diminishing (or no) return;
so if increasing the size has little or no impact, you have probably reached that point and do
not need to increase the size any more.

Remember that any contention, real or false, causes the IRLM to do additional work in order
to resolve that contention. This involves the IRLM itself being dispatched, and XCF signalling
activity with the other lock managers, which has a negative impact on performance.

11.4.3 Automatic rebuild

If you initially specify MAXUSRS as 7 or fewer so that you have two-byte LTEs, then the IRLM
initiates a structure rebuild if a seventh IRLM (yes, the seventh) joins the group. This causes
the number of LTEs to be cut in half, because they are now 4-byte entries instead of 2 (or
perhaps 8, instead of 4). Keep this in mind when setting the MAXUSRS and the size of the
structure, so that you do not get surprised by a sudden increase in false contention due to a
reduction in the number of LTEs.

If this happens, you can, of course, alter the size of the structure and then rebuild to get back
to the optimal number of LTEs.

11.4.4 System-managed duplexing

From a performance perspective, you want to avoid this function, because it can add
significantly to the CF structure response time. The IRLM can rebuild the lock structure if
something happens, except in the case where both the lock structure and an IRLM fail
concurrently (such as when they are both on the same physical hardware). In that case, you
have to restart IRLM (and IMS if it also went down) before the lock structure can be rebuilt
and data sharing can continue. This is an unlikely event but might have to be considered over
performance.

204 IMS Performance and Tuning Guide

11.5 VSAM cache structure

The VSAM cache structure is a directory only structure, so it should be large enough to have
a directory entry for each buffer in every IMS. It actually only needs to have enough entries to
handle all of the unique blocks in all of the IMS images (including batch data sharing), but it is
impractical and a waste of effort to try to figure out this number. To determine the size, you
need to determine the total number of VSAM buffers in all of the IMS images, which might join
the data sharing group. This number is then used as input to the CFSIZER program. A quick
manual calculation can be done by taking the number of buffers, multiplying by 300 and
adding another 256K for CF overhead. Always estimate high. It is better to have a bit too
much storage than not enough.

If the size is too small to support all of the buffers in the data sharing group, there are
directory reclaims, which can affect performance. In this case, some buffers in IMS cannot be
used and any existing data in them has to be discarded.

IMS supports the dynamic ALTER of the VSAM cache structure size, if you determine it is too
small. However, beware of using the AUTOALTER facility, because it is possible for the
system to decrease the size of the structure if it needs storage for something else.

11.6 OSAM cache structure

The OSAM structure might be a directory only structure or might additionally cache data. If
using the structure only for buffer tracking and invalidation as with the VSAM structure, then
the sizing considerations are basically the same. Just add up all the OSAM buffers in all the
IMS images in the data sharing group, including sequential buffer sets. Feed that number into
the CFSIZER or manually calculate as shown above.

For data caching, IMS allows you to specify what is to be cached, if anything, by subpool.
Because you can isolate database data sets to specific subpools, you can effectively cache
by database data set. The following considerations should help guide you to decide if caching
is a good idea:

� For the CACHE ALL option, consider that every block read into IMS is also written to the
structure. This costs CPU and to a lesser extent, elapsed time. This option is probably
best for very small databases (or small locality of reference) that are heavily referenced
and all the blocks can remain in the structure.

� Full function database blocks are always written to DASD at sync point, regardless of the
cache option.

� For the CACHE CHANGED option, blocks are only written to the structure if updated. If
many IMS images update the same set of blocks frequently, then this option might be
appropriate, because it prevents each sharing IMS from rereading updated blocks from
DASD.

11.7 DEDB considerations

DEDBs do not use a cache structure except for shared VSO. With Parallel Sysplex data
sharing, there is additional overhead however. This overhead is in accessing the lock
structure. Shared DEDBs get a global lock to update. Because the IRLM lock structure
typically has very fast response time, this is not usually a concern; however, additional
contention can occur depending on the access pattern to these databases. Database

Chapter 11. IMS Parallel Sysplex considerations 205

contention should be closely monitored and corrective action taken to reduce the contention.
Most often this accomplished by using a smaller CI size.

11.7.1 Shared VSO

Shared VSO utilizes a cache structure or many cache structures. Its use is specified on an
area by area basis. Here are some considerations:

� Use the PRELOAD option for small, highly referenced areas. With this option, the entire
area must fit into the CF structure. NOPREL accommodates larger areas and can be as
effective as PRELOAD in some cases, but it depends on the data access pattern.

� The LKASID option is normally best. You can monitor the %hits and %valid numbers and if
these numbers are extremely low, then you can consider turning off this option. Otherwise,
leave it on.

� Private buffer pools are actually located in ECSA. Keep this in mind, because common
storage is a limited resource. If the %hits is not too good, but %valid is almost equal, then
this is an indication that additional buffers might help.

� SVSO updates are written asynchronously to sync point processing. The castout process
as it is called is initiated at IMS checkpoint time. IMS reads the updated blocks from the
CF and writes them to DASD. For this reason, it is important that SVSO areas with lots of
updates physically reside on the best performing DASD.

� IMS duplexing is more efficient than system-managed duplexing. A general guideline is
that IMS duplexing is twice the CPU overhead of a single structure with little or no
response time increase. System-managed duplexing increases CPU overhead as well but
also increases the response time to the structure by three to five times.

11.8 Application considerations

Review PSB PROCOPTs to insure only the necessary processing options are used. This
should be done for PSBs used by the high volume transaction. If a particular high volume
transaction only performs read operations, then changing the PROCOPT from A to G or even,
if business integrity allows, GOT or GON might have a significant impact on reducing
contention.

Review DEADLOCK situations. In some cases, the number of deadlocks can actually be
reduced with data sharing but that is a very rare situation. If deadlocks are an impact without
data sharing, then they most likely get worse when Parallel Sysplex data sharing is
implemented.

Look for areas of contention. This might be a simple change of PROCOPT as mentioned
above or it might be that an application change is necessary. This is especially the case
where a single segment or set of segments are updated by many high volume transactions.
As an interim solution, it is sometimes necessary to limit the number of regions which can
process a given transaction, or possibly process that transaction type on a single IMS. While
this is not a permanent solution for availability, it might be a temporary patch for performance.

11.9 Shared queues

There can be some significant advantages to shared queues, which are primarily automatic
workload balancing, increased capacity, and availability.

206 IMS Performance and Tuning Guide

From a performance perspective, shared queues:

� Increase CPU usage. How much depends to a large degree on the speed of the Coupling
Facility and the links.

� Increase log data and I/O operations, because the CQS logging is in addition to IMS
logging.

� Increase elapsed times. This is most apparent if the synchronous APPC/OTMA function is
enabled, which necessitates the use of MVS™ RRS.

� Facilitate a decrease in log data for any given IMS image by spreading the transaction
load.

11.9.1 IMS parameters

The following IMS parameters can directly impact full function shared queues performance:

� QBUF

IMS dynamically expands and contracts the number of QBUFs, but it is best to specify a
reasonable value. If no value is specified, then the value on the BUFFERS keyword of the
MSGQUEUE macro is used, or 255, if BUFFERS is not specified. While the default of 255
is probably not a bad starting place, you should specify a value for QBUF so there is no
question as to what value is being used.

� LGMSGSZ

LGMSGSZ size should be large enough to accommodate most, if not all, of your largest
messages, if possible. Any messages larger than this cause additional interaction with the
Coupling Facility which impacts performance.

� QBUFSZ

QBUFSZ is the size of each queue buffer. It should be the same as LGMSGSZ or some
multiple. From a performance perspective, there is no real advantage for making this size
larger than LGMSGSZ.

� SHMSGSZ

Set SHMSGSZ value to something evenly divisible into QBUFSZ. The basic principle is to
have this value large enough to hold most of the messages, which are smaller than those
going into LGMSGSZ to make the best possible use of storage in the queue pool.

� OBJAVGSZ

The OBJAVGSZ value sets the ratio of list entries to data elements in the Coupling Facility,
which can impact overflow processing. If ever in doubt, set this value to 512, which yields
a 1:1 ratio. We cover this more in the structure size section.

The other parameters, such as QBUFMAX, QBUFHITH, and so on, are normally fine when
you use the default.

11.9.2 Structure size

As with other structures, the best place to get sizing information is with the CFSIZER Web
site. It is best to avoid overflow processing under normal conditions. The Web site asks for the
SHMSGSZ and LGMSGSZ values as well as the high used DRRN for short and long
messages. These values allow for normal activity, but it is probably best to consider making
the size much larger, because sometimes delays happen for various reasons. Consider
factoring in how long you might want to hold messages if for some reason you had some
locking problem hanging up your regions or if some destination, perhaps a remote MSC link,
is unavailable. While these might be considered abnormal cases where overflow processing

Chapter 11. IMS Parallel Sysplex considerations 207

could help, it might be better to be able to handle some period of time before invoking
overflow. Also, consider specifying a SIZE as well as INITSIZE for the queue structure. This
allows the structure to be altered to a larger value when it is becoming full. When this
happens, there are a number of messages which can be used for automatic notification that
there might be a problem.

11.9.3 Structure duplexing

IMS does not provide software duplexing of the queue structures. The same considerations
apply to the queue structures as they do to the lock structure. That means from a
performance perspective, you want to avoid system-managed duplexing (SMD), but if you
want to be able to rebuild a queue structure without having to also restart CQS in the case of
a concurrent failure, you would probably have no choice. Consider how likely it is that you
would have a double failure such as that before using SMD.

11.9.4 Overflow

Overflow processing occurs whenever the threshold specified in CQSSGxxx is met. CQS first
tries to alter the primary structure to a larger size if the SIZE value in the CFRM policy has not
yet been reached. If the primary structure cannot be increased, then the overflow structure, if
specified, is allocated and some queues moved to decrease the primary structure usage by
20%. Some things to consider:

� OBJAVGSZ: Only data elements are monitored by CQS, so be sure to set this value low
enough to achieve the proper LE/EL ratio. If IMS stops processing due to a structure full
condition, that is generally not considered good performance.

� SIZE of overflow structure: Consider making this the same or larger than the primary
structure. This would allow the movement of a queue name in the case where one
particular queue name is causing the full condition.

� Structure activity is quiesced during overflow processing so be sure this is only invoked in
rare circumstances.

11.9.5 Structure checkpoint

The speed of processors and links keeps improving, which tends to reduce the impact of
taking structure checkpoints, but depending on the amount of data in the structure this could
still take several seconds.

� Activity quiesced while in progress. Time depends on amount of data.

� Frequency affects time to rebuild queues but also interacts with the amount of MVS logger,
which needs to be kept.

� CFRM couple data sets are accessed by all systems to quiesce and resume, so their
performance is extremely important to the checkpoint process.

11.9.6 MVS logger

Performance considerations for the CQS log streams are:

� Estimate the volume by looking at the IMS 01 and 03 records. There are other records as
well, but these make up the large majority of the volume.

� Avoid the use of staging data sets if possible. Use of a structure with duplexing in a data
space is the recommended configuration for best performance.

208 IMS Performance and Tuning Guide

� When duplexing to a data space, be aware that the amount of data, therefore, storage
used, in the data space is impacted by the frequency of structure checkpoints and the size
of the log structure. A low checkpoint frequency and large structure size can cause a high
storage demand.

� Set the logger lowoffload value to 0.

� Use large blksize such as 64K for the log streams.

CQS uses the MVS logger, which in turn uses a CF structure and staging data sets.
Depending on your hardware configuration, this might not always be possible, as we have
discussed with other structures. If you must use staging data sets or if it is even a possibility in
the case of a configuration change, make sure these data sets are on the best possible
performing DASD, because they are even more impacted than the WADS.

The amount of data written to the MVS log can be estimated by looking at the IMS 01 and 03
log records. There are other records as well, but these make up the majority of the volume.

Set your logger lowoffload value to 0.

11.9.7 FF scheduling differences

In a shared queues environment, IMS currently has no easy way to know how many
messages are on the shared queue. Because of this, the standard PARLIM rules cannot be
applied and something called false scheduling can occur. The best way to reduce the cost of
false scheduling is to try to avoid scheduling in the first place. Here are some tips:

� Use (P)WFI when possible to avoid scheduling.

� Put high volume transactions in specific classes.

� Specify MAXRGN, especially for those transactions that are not in unique classes.

� Use PARLIM > 1. This makes IMS less reactive and potentially reduces scheduling. Take
the average processing time for the transaction into account to be sure this would not
cause unnecessary delays however.

11.9.8 FP Parallel Sysplex processing options

The DBFHAGU0 exit routine can be used to set a Parallel Sysplex processing code, which can
impact how CQSs process work in a shared queues environment. There are three possible
options:

� Local first

This is the default, and most likely the best option. With this option, there is virtually no
shared queues overhead in the case where the transaction can be processed on the
inputting system.

� Local only

This option avoids any shared queues overhead but limits availability because there is no
queue sharing at all.

� Global only

This option always places the message on the shared queue, so you get all the overhead
all the time. This is not the option for best performance.

Chapter 11. IMS Parallel Sysplex considerations 209

210 IMS Performance and Tuning Guide

Chapter 12. IMS On Demand performance

This chapter describes the IMS On Demand operating environment and the related best
practices of integrating current business application processes across the enterprise with
existing core applications.

This chapter discusses all IMS On Demand features and reviews their performance
considerations.

This chapter contains the following:

� IMS connectivity solutions:
– IMS Connect

� IMS Integration solutions:
– IMS Simple Object Access Protocol (SOAP) gateway
– IMS Java environment
– IMS Java performance considerations

12

© Copyright IBM Corp. 2006. All rights reserved. 211

12.1 IMS connectivity solutions using IMS Connect

IMS Connect, now part of the IMS Version 9 base product, supports communications
between multiple TCP/IP clients and multiple IMS systems. IMS Connect communicates to
IMS using IMS Open Transaction Manager Access (OTMA). OTMA can be implemented only
in a z/OS sysplex-capable environment, because it requires the services of z/OS Cross
System Coupling Facility (XCF).

OTMA is a high-performance protocol designed to operate through XCF with speeds almost
comparable to main memory. The support of large networks is handled through the use of
OTMA clients.

A review of the architecture of IMS Connect is needed in order to define some of the
performance objectives. Figure 12-1 describes the IMS Connect configuration and some of
the parameters that are required to configure IMS Connect.

Figure 12-1 Overview of the IMS Connect configuration

In looking at the configuration of your TCP/IP network, a number of considerations must be
understood in order to customize IMS Connect to site specific requirements. There are some
restrictions that need to be understood:

� Each IMS Connect address space can have a maximum of 50 ports defined. Ports are
defined using the PORTID definition on the TCP/IP statement. For SSLPORT, a maximum
of one port can be used and it must not conflict with any ports that are previously defined.
If more than one port is used, unpredictable results can occur.

� If more than one SSL port is required, z/OS 1.7 Communication Server supports multiple
SSL ports. Multiple ports are then defined as part of the standard PORTID definition in
IMS Connect configuration member. This means that SSL is not used within IMS Connect,
but through TCP/IP instead. In this case, the IMS Connect configuration member does not
have SSLPORT and SSLENVAR coded.

T

C

P

/

I

P

XCF Group Name

IMSXCF
9000

I
M
1
A
C
O
N
T

IMSCTL
IM1A

O

T

M

A OTMA=Y
GRNAME=IMSXCF
OTMANM=IMSTMEM

HWS (ID=IM1ACONT,RACF=Y)
TCPIP (ECB=Y,HOSTNAME=TCPIP,PORTID=(9000)

SSLPORT=(8000),EXIT=(HWSSMPL1),SSLENVAR=HWSCFSSL)
DATASTORE (ID=IM1A,MEMBER=IM1AMEM,GROUP=IMSXCF,TMEMBER=IMSTMEM)

Client application specifies
IP address or DNS Name of host
Port ID and Datastore ID

TCP/IP Network

IMSTMEMIM1AMEM

212 IMS Performance and Tuning Guide

� Each port has a maximum of 65 535 connections of which one is always a listener in the
TCP/IP address space.

� If you set MAXSOC, then you are limited to MAXSOC minus the number of listeners for
ports you have activated.

12.1.1 Socket types

IMS Connect supports three types of client connection protocols, which are called sockets.
The three socket types are:

� Persistent socket remains up for the duration that the client remains connected. It is only
disconnected by either IMS Connect or the client.

� Transaction socket remains connected for a single connection or IMS conversation. This
connection can be terminated only by IMS Connect.

� Non-persistent socket maintains a socket for a single input-and-output pair. IMS Connect
terminates the connection after sending the output.

12.1.2 Asynchronous output processing

IMS Connect supports asynchronous output processing by allowing messages to be queued
to an output tpipe destination. The client is required to connect using the clientid as the tpipe
name. The clientid is part of the IRM header associated with starting up the socket
connection.

Table 12-1 shows the various socket types and where they can be used. Note that the IMS
Connector for Java supports only persistent socket types, including asynchronous output
processing.

Table 12-1 Socket types and their uses

Performance considerations for IMS Connect
In deciding how to set up and implement IMS Connect, an understanding of your network
architecture is required to determine the following:

� Your firewall rules with regards to inactivity time-outs. An understanding of the firewall
rules in determining what would happen if a firewall times out a TCP/IP connection due to
inactivity.

� Your network resilience methodology. An understanding of the rules in place for dynamic
management of connectivity to TCP/IP.

� What methodology is used to load balance TCP/IP traffic across your network.

� Bandwidth issues with regard to the size of messages flowing through the network.

� TCP/IP performance options that have been enabled. These can be obtained from your
TCP/IP network specialist.

Persistent Transaction Non-persistent

Send-then-commit Available Available Available

Commit-then-send Available Available Not available

Connector for Java Available Not available Not available

Asynchronous output Available Available Not available

Chapter 12. IMS On Demand performance 213

Some of the performance considerations are:

� Plan on designing the number of IMS Connect address spaces in relation to your
resilience and connectivity strategy.

� Depending on your load balancing requirements, you might need to review whether you
would like to use Sysplex Distributor as a means to ensure resilience.

� Deciding on Virtual IP addresses (VIPA) allows for high availability of the TCP/IP stack.

� Ensure that ECB=Y is specified on your IMS Connect address space. This allows TCP/IP
to post an ECB into IMS Connect making performance better.

� Ensure that MAXSOC is high enough for maximum concurrent sessions. Member
BPXPRMxx in SYS1.PARMLIB must have the following to match IMS Connect requests:

– MAXSOCKETS must be set to the total number of active sockets per stack.

– MAXFILEPROC must be set to the total number of socket descriptors per stack.

� Set IPV6=Y to allow for better performance even if the network is not at IPV6 level.

� If you are using the IMS Connector for Java, only persistent sockets are supported.
Connection pooling plays an important role if you are going to use the connector for high
volumes. Ensure that you are using managed connections to allow for best optimization of
the connection factory. For asynchronous output processing using IMS Connector for
Java, persistent sockets are used and the settings for the properties associated with the
connector object need to configured to your requirements.

� If you are building your own sockets, use persistent sockets for traditional transactional
processing. This prevents the overhead of issuing TCP/IP connects and disconnects. For
asynchronous output processing, transaction sockets are recommended, because they
stay up for the duration of the timer value specified in the IRM header. IMS Connect
terminates the connection and cleans up the control blocks to prevent duplicate clients
when the connection is started.

� TCP/IP considerations with IMS Connect:

– On the client TCP/IP environment, ensure:

• TCPNODELAY=DISABLE. This allows optimization of transmission but depends on
the client environment. Allows for multiple writes and waits for the buffer to be filled
before sending.

• SO_Linger=Y,VALUE=10 ensures no loss of data. The close of the socket is
blocked until ACK is received or 10 seconds, whichever comes first.

– In PROFILE.TCPIP configuration on the mainframe, ensure:

• IMS Connect PORT set to NODELAYACKS. This allows ACKS to be sent
immediately.

• Specify SHAREPORT, which allows IMS Connect PORTS to be shared by multiple
IMS Connect instances on the same stack.

• TCPCONFIG INTERVAL or KEEPALIVEOPTIONS INTERVAL allows TCP/IP to
maintain a connection that can be inactive for long periods of time.

• SOMAXCONN must be defined large enough for maximum concurrent connections.

� IMS Connect makes use of XCF signalling to send messages to IMS. The XCF group
must be isolated from the other groups and given its own set of buffers. The buffers must
be large enough to accommodate your peak message flows.

More detailed information about IMS Connect and the various implementation options can be
found in IMS Connectivity in an On Demand Environment: A Practical Guide to IMS
Connectivity, SG24-6794.

214 IMS Performance and Tuning Guide

12.1.3 Performance statistics on IMS Connect

The latest performance statistics are based on IMS Connect 9.1, which is now part of the IMS
Version 9.1 base product. The performance was conducted comparing SNA as opposed to
TCP/IP. The setup configuration for IMS Connect was as follows:

� RACF was enabled (RACF=Y).
� MAXSOC was set to 90000 (MAXSOC=90000).
� IPV6 was set to no (IPV6=N).
� ECB was set to Y (ECB=Y).
� 60000 socket connections were used.

For VTAM, the configuration was set up to allow for a maximum of 60000 SLUTYPE 2
terminals emulating 3270. Standard LU2 definitions were defined to VTAM.

Table 12-2 Results of the performance test between SNA and TCP/IP

As you can see from Table 12-2, the results of the study indicate that the ITR for TCP/IP
improved by 13.9% when compared to the ITR for SNA. The ETR is the actual arrival rate and
shows the processor utilized at 89% and 85.2% respectively.

ITR is a calculated figure by working out what the throughput would be if the processor is
running 100%. The throughput achieved is directly related to the manner in which TCP/IP
handles connectivity when compared to VTAM. The shortened path length and improved
protocols affect the ITR and naturally, affect the response times end-to-end.

Storage above the line has also reduced by 17.8%, again a factor of the efficiency of TCP/IP.

12.2 IMS SOAP Gateway

IMS SOAP Gateway allows you to leverage existing IMS applications as Web services without
the need for a full blown J2EE™ server. It allows for the integration of your IMS investment
into a service-oriented architecture (SOA). IMS SOAP Gateway supports open standards,
including SOAP/HTTP 1.1 and WSDL 1.1.

Figure 12-2 on page 216 provides an overview of the IMS SOAP Gateway and the integration
with IMS Connect.

Variables measured SNA TCP/IP

Number of connections 60000 60000 across 50 ports

CPU busy 89% 85.2%

External throughput rate (ETR) 1 829 transactions per second 1 996 transactions per second

Internal throughput rate (ITR) 2 055 transactions per second 2 342 transactions per second

Storage above 16 MB line 146 MB 119 MB

Important: No performance data was available on IMS SOAP Gateway at the time of
writing this book. We discuss some of the performance considerations when implementing
the IMS SOAP Gateway.

Chapter 12. IMS On Demand performance 215

Figure 12-2 IMS SOAP Gateway overview

12.2.1 Performance considerations using the IMS SOAP gateway

In understanding the need to implement the IMS SOAP Gateway, the need to identify with a
SOA type architecture is of prime importance. Typically, SOA provides the organization with a
business process driven architecture, which is responsive, flexible, and consistent in its
delivery of processes across the organization.

We now discuss several of the requirements for setting up IMS SOAP Gateway and a few
limitations in IMS in order to address performance constraints:

� Messages can be transported to IMS as XML, or the XML adapter in IMS Connect can
translate the message into the standard IMS format. When using XML as a means to
transport messages into IMS, consideration must be given to the size of the XML
message. Messages larger than the IMS online log data set (OLDS) blocksize would imply
use of multiple buffers. This inefficiency results in performance degradation of your IMS
system.

� When setting up IMS SOAP Gateway, the number of threads required to allow for
concurrency must be reviewed. This is specified in the server.xml file in IMS SOAP
Gateway.

� IMS SOAP gateway only supports persistent connections. To set up the connection, IMS
SOAP gateway provides a deployment utility to set up a connection bundle. All that is
required to set up the connection is the following:

– Give the connection bundle a name.
– Provide either the host name or the IP address.
– Provide the port number.
– Provide the datastore name.
– Provide user ID, password, and RACF group name (all optional).

IMS

O
T
M
A

MPP

GU IOPCB

ISRT IOPCB

IMS Application
IMS Connect

z/OS

IMS
SOAP
Gateway

XML

Web Service Clients,
for example, Microsoft .Net,

SAP, Java, and so on

SOAP

Integrates IMS assets into SOA by providing a standard
Web Services interface

IMS V9

XML Adapter

IMS DB
(XML DB)

216 IMS Performance and Tuning Guide

When setting up the SOAP gateway, the number of threads required to allow for concurrency
must be reviewed. These are specified in the server.xml file in the SOAP Gateway.
Example 12-1 shows how you define the default number of maximum threads of 150 on the
non-SSL port of 8080.

Example 12-1 The contents of C:\Program Files\IBM\IMS SOAP Gateway\server\conf\server.xml

<!-- Define a non-SSL Coyote HTTP/1.1 Connector on port 8080 -->
 <Connector port="8080"
 maxThreads="150" minSpareThreads="25" maxSpareThreads="75"
 enableLookups="false" redirectPort="8443" acceptCount="100"
 debug="0" connectionTimeout="20000"
 disableUploadTimeout="true" />
 <!-- Note : To disable connection timeouts, set connectionTimeout value
 to 0 -->

12.3 IMS Java environment

The IMS Java environment can be viewed in three layers:

� The assembler layer is required, because we need to interact to the IMS assembler
modules using the C interface. CEETDLI provides this interface.

� The IMS Java class library is essentially comprised of the following:

– Java Native Interface (JNI), which enables communication between C and the Java
layers.

– The base package provides the mapping of the DL/I calls in Java.

– The application package is for use in IMS dependent regions for transaction and
message queue processing.

– The database package provides the JDBC™ layer that make the SQL calls.

– The XML package for storing and retrieving XML documents in a IMS hierarchy.

� The client code represents the Java application layer designed by the java developer.

Figure 12-3 on page 218 provides us with an overview. It shows the Java environment,
deployment of the Java class library, and how IMS data is accessed from various sources,
namely:

� Java message region (JMP) or Java batch region (JBP) with IMS transaction and
message queue services

� CICS Transaction Server

� DB2 stored procedures

� WebSphere® Application Server

Chapter 12. IMS On Demand performance 217

Figure 12-3 A view of the Java environment for IMS

12.3.1 IMS Java application performance considerations

Traditionally, COBOL and PL/I have been the preferred languages when writing mission
critical application applications under IMS. Assembler from an application perspective is
generally used in combination with COBOL applications to provide specialized interfaces in
IMS and the z/OS operating system.

Java on the other hand has evolved into a widely used programming language. Today, it is a
standard in teaching at universities and colleges. Java and performance need to be looked at
in relation to traditional programming languages. Reasons why Java behaves differently than
traditional programming languages are:

� Java Virtual Machine (JVM™) compared to a real processor. There is overhead when
running a JVM. This overhead causes Java to run slower than an equivalent application
written in a traditional language, such as COBOL, PL/I, or Assembler.

� Java is object-oriented, offering features such as inheritance and polymorphism. This
requires extra computation time to decide which of the inherited methods in the hierarchy
is the one to actually call.

� Memory management and garbage collection are done automatically and the programmer
does not need to worry about memory allocations or freeing memory. Both the allocation
and the garbage collector, but especially the garbage collector, are expensive and
consume huge resources while executing. In traditional programming environments, the
programmer is responsible for allocating and freeing memory.

� Java incorporates a number of security measures while traditional programming
languages require the programmer to handle security.

Java advantages, such as platform independence, memory management, powerful exception
checking, built-in multithreading, and security checks all add costs in terms of an interpreter,
garbage collector, thread monitors, and run-time checks. Traditional languages do not have

M
P
P

B
M
P

I
F
P

COPYLIB

PSBs

DBDs

CEETDLI Interface

JNI

Base

A
p
p

DB

JDBC / SQL

IMS Java

App

DLI

Database
View

CEETDLI Interface

JNI

Base

A
p
p

DB

JDBC / SQL

IMS Java
App

DLI
Database

View

JMP JBP

CEETDLI Interface

JNI

Base

A
p
p

DB

JDBC / SQL

IMS Java
App

DLI
Database

View

CEETDLI Interface

JNI

Base

A
p
p

DB

JDBC / SQL

IMS Java
App

DLI

Database
View

Stored
Procedure EJBJCICS

CEETDLI Interface

JNI

Base

A
p
p

DB

JDBC / SQL

IMS Java
App

DLI
Database

View

Java Virtual Machine

Java Virtual Machine

Java Virtual Machine

Java Virtual Machine

CEETDLI Interface

JNI

Base

A
p
p DB

JDBC / SQL

IMS Java
App

DLI
Database

View

CICS

DB2
WebSphere

IMS

IMS DB
ODBADRA

DBDGEN
PSBGEN
ACBGEN

218 IMS Performance and Tuning Guide

these costs and are cheaper to run, but they might not provide the flexibility and platform
independence that is required.

12.3.2 COBOL to Java translations

Translating COBOL to Java can be achieved in three ways:

� Use of a standard COBOL to Java translator product available in the market.
� Develop your own COBOL to Java translator.
� Manual translation.

Manual translation seems to be the most appropriate, because no product supports direct
translation of IMS COBOL to Java. There are however considerations when translating from
COBOL to Java:

� Mappings between COBOL, Java, and IMS data types. COBOL offers a wide selection of
data types, including self-defined decimal data types. IMS Java uses
java.math.BigDecimal class to mirror these complex data types.

� COBOL allows hierarchical data structures and these cannot be mirrored with Java base
data types. An object container hierarchy needs to be implemented to mirror the COBOL
structure accordingly. An example of this type of structure is an SSA list. In COBOL, it is
implemented as a byte array with hierarchical access. In IMS Java, SSA lists are a type of
container objects, containing the appropriate SSA.

� COBOL in an IMS implementation requires the appropriate use of a PCB. With IMS Java,
this happens implicitly and is hidden from the programmer.

Table 12-3 provides an overview of important mappings between COBOL data types and
Java data types. However, data type mapping remains a complex problem, because there are
many special cases to be considered for PACKEDDECIMALs and ZONEDDECIMALs.

Table 12-3 Data types and conversion in different environments

12.3.3 Performance statistics comparing COBOL to Java

This section shows the performance characteristics of the IMS Java Message Processing
region support when compared to an equivalent IMS application program using COBOL. An
evaluation including COBOL was deemed valuable for purposes of application planning and
design considerations.

COBOL type Digits (Bytes) IMS Java and SQL
type

Java type

PIC X CHAR java.lang.String

PIC 9 BINARY 4 (2) SMALLINT short

PIC 9 BINARY 9 (4) INTEGER int

PIC 9 BINARY 18 (8) BIGINT long

COMP-1 (4) FLOAT float

COMP-2 (8) DOUBLE double

PIC9 COMP-3 (16) PACKEDDECIMAL java.math.BigDecimal

PIC9 DISPLAY ZONEDDECIMAL java.math.BigDecimal

Chapter 12. IMS On Demand performance 219

The tests were conducted on the following hardware and software levels:

� IMS Version 9
� IMS Connect 2.2
� Java JVM (SDK 1.3.1)
� IBM zSeries z990
� z/OS 1.5
� IEEE floating point support

At the time of writing this book, new levels of hardware and software have evolved. These
results do not take these new features into account. They are:

� Java JVM (SDK 1.5.0)
� z/OS 1.7
� IBM zSeries Z9
� zAAP processor

The test environment profile was as follows:

� Light transactions with 10 database calls per transaction.
� Heavy transactions with 400 database calls per transaction.
� IMS Connect with CM1 and synclevel=none.
� Cobol applications were rewritten in Java.
� Performance comparison was between a JMP and a MPP.

In reviewing these performance results, we need to understand the differences between Java
and COBOL as highlighted in 12.3.1, “IMS Java application performance considerations” on
page 218. We also need to consider the fact that this benchmark is based on a rewrite of the
COBOL application to Java.

Table 12-4 summarizes the throughput and CPU time per transaction on both the light and
heavy profile transactions in a non-sysplex environment.

Table 12-4 Comparison between COBOL and Java

Figure 12-4 on page 221 shows the differences when we run the light transactions showing
both the throughput and CPU time per transaction consumed by the workload in a
non-sysplex environment.

Light and heavy transaction in COBOL Light and heavy transaction in Java

2 428.79 transactions per second 1 617.59 transactions per second

180.34 CPU time per transaction 577.4 CPU time per transaction

125.12 transactions per second 83.82 transactions per second

3 204.92 CPU time per transaction 11 882.61 CPU time per transaction

220 IMS Performance and Tuning Guide

Figure 12-4 Performance benchmark showing light transaction throughput and CPU

Figure 12-5 shows the differences when we run the heavy transactions showing both the
throughput and CPU time per transaction consumed by the workload.

Figure 12-5 Performance benchmark showing heavy transaction throughput and CPU

The throughput in Java when compared to COBOL does show a decrease, but it is deemed
reasonable due to the Java implementation. What is notable is the huge increase in CPU time

Light Transaction
non-Shared Q, non-Sysplex

Throughput Rate

Cobol 43.8%,
2428.79

Java 93.4%,
1617.59

0

500

1000

1500

2000

2500

3000
Tra

ns
ac

tio
ns

/se
co

nd

CPU Time per Transaction

Java, 577.4

Cobol, 180.34

0

100

200

300

400

500

600

700

uS
eco

nds

Heavy Transaction
non-Shared Q,non-Sysplex

Throughput Rate

Java 99.6%,
83.82

Cobol 40.1%,
125.12

0

20

40

60

80

100

120

140

Tr
an

sa
cti

on
s/s

ec
on

d

CPU Time per Transaction

Java, 11882.61

Cobol, 3204.92

0

2000

4000

6000

8000

10000

12000

14000

uS
ec

on
ds

Chapter 12. IMS On Demand performance 221

per transaction. A simple light workload shows a 2.2 times increase in CPU time when
compared to a heavy workload, which shows a 2.7 times increase in CPU.

The original benchmark performed in 2003 using IBM zSeries Z900, IEEE floating point
emulation, IMS Version 7, and JDK™ 1.3.1 without all performance fixes showed a 13.3
times increase in CPU. The Java environment is improving efficiency with improved JDKs.
With newer JDKs and zAAP processors, the cost of running Java applications is significantly
decreasing.

222 IMS Performance and Tuning Guide

Appendix A. Guidelines and
recommendations

This appendix contains guidelines in bulleted form from detailed information in this book.

A

© Copyright IBM Corp. 2006. All rights reserved. 223

A.1 First step
The first step in any performance and tuning effort is the evaluation process. We list below an
evaluation process that you can use in any tuning effort:

1. Define reasonable, measurable objectives.
2. Examine the application design performance objectives and measure the application.
3. Have the objectives been met?

a. Yes, document the status quo.
b. No, go on to the next step.

4. Identify problem areas.
5. More information required?

a. Yes, select appropriate tool.
b. No, go on to the next step.

6. Take corrective actions.
7. Re-measure the application.
8. Go back to step 3 above.

The performance objectives can be either throughput-oriented or response time-oriented.
But, they must be very precise. Do not say that response time must be less than a second.
Say that response time must be five-tenths of a second or less for program XYZ as measured
by the IMS DC Monitor run at 0830 hours, system time, on Wednesday of a work week.
Update objectives as more information becomes available and as workload changes.

A.2 Choosing an IMS access method
To choose an IMS access method:

� What type of processing is done (Choices are shown in preferred order)?
– Direct: Use DEDB, HDAM, HIDAM, or HISAM.
– Sequential: Use DEDB (Seq Rand), HDAM (Seq Rand), HIDAM, or HISAM.
– Both: Use DEDB (Seq Rand), HDAM (Seq RAND), or HIDAM.

� Is the data volatile? Yes, use DEDB, HDAM, or HIDAM.
� Do the database records vary in length? Yes, use DEDB, HDAM, or HIDAM.
� Are logical relationships needed? Yes, use HDAM or HIDAM.
� Are secondary indexes needed? Yes, use HDAM or HIDAM.
� Is there a need for a journaling capability? Yes, use DEDB.

A.3 HISAM
HISAM considerations:

� One database.

� Must be VSAM.

� Two data sets.

� Primary is a KSDS.

� Secondary is a ESDS.

� Access to root is through the KSDS index component of the primary data set.

� Segments are stored physically adjacent within the VSAM record.

Note: Wherever HDAM or HIDAM is shown, partitioning (HALDB) is preferred. Seq Rand
means using a Randomizer that maintains the key sequence.

224 IMS Performance and Tuning Guide

� One database record per VSAM record.

� Segment Prefix: Two bytes (segment code and delete byte).

� One or more database records per CI.

� CI size is determined in the define cluster, not in the DBD.

� FREESPACE is determined in the define cluster, not in the DBD.

� HISAM is difficult to use when database record lengths vary widely.

� There is no multiple data set group capability.

� Use for non-volatile database records (that is, low dependent segment insert or delete
activity).

� Use fixed length segments for replace activity.

� Good for sequential processing:

– Of database root segments.

– Through the entire database record.

� Good for random root processing.

A.3.1 HISAM performance general guidelines
The suggested rules are:

� Only put on the pointers that are needed. The fewer the number of pointers, the less
maintenance that IMS has to perform and, therefore, the faster the application.

– VSAM record size and control interval size are key to tuning.

– Keep 80% of the database records in the KSDS, and let the rest go into overflow.

– Keep most accessed segments in KSDS.

– Minimize I/O to ESDS.

� To insert dependents:

Define the VSAM CI to be larger than the average database record length at initial load.
This leaves unused space in the VSAM CI, which can now be used at update time to insert
dependent segments for a given root.

� To insert new roots:

– Leave KSDS free space for inserts of a new database records after initial load.

– If you are always inserting roots whose keys are higher than the highest key in the data
set, do not leave free space in the CI or CA.

A.4 HDAM
HDAM considerations are:

� One database.

� One to 10 data sets (with data set groups).

� Database can be OSAM or VSAM.

� One or more database record per “VSAM record.”

� Segment Prefix: Segment code, delete byte, and pointers.

� CI size is determined in the define cluster, not in the DBD if VSAM.

Appendix A. Guidelines and recommendations 225

� FREESPACE is determined in the Primary DBD, not the define cluster.

� Access to root is through a hashing routine. Typical routines (such as the recommended
DFSHDC40) make consecutive processing non-sequential by key. Sequential randomizers
can be built to cause consecutive processing in key order.

� Insert of segments uses free space in the most desirable block if possible.

� FREESPACE is determined in the define cluster, not in the DBD for secondary indexes
along with CI size.

� Good for key read access to:

– Database roots

– Segments within a database record

� Synonyms are chained (PTF) in ascending key sequence if the keys are unique;
otherwise, they are chained according to the insert rule.

� Use less than a 70% fill factor for HDAM databases that are going to have inserts to them.
Use a 90% fill factor for HDAM databases that are read only.

A.4.1 HDAM performance general guidelines
The suggested rules are:

� Only put on the pointers that are needed. The fewer the number of pointers, the less
maintenance that IMS has to perform and, therefore, the faster the application.

� Keep segments to be accessed in the same block as the entry segment.

� Do not code any FREESPACE (unless for a secondary data set group that does not
contain the root).

� Do not code Twin-Backward pointer on the root.

� Code SCAN=0.

� Code SEARCHA=1.

� Unsequenced segments:

– Use insert rules as follows:

• (,FIRST)

• (,LAST) with Physical Child Last pointer

– Sequence segments only if required.

– Use “9s complement” if adding higher keys.

� Root Addressable Area:

– Packing factor:

• General use 60 to 70%

• Inquire only: Greater than 70%

• Heavy insert activity: Less than 60%

– Blocks and Root Anchor Points go together.

� Root Anchor Point.

� 1.2 roots per active RAP or less.
If the average database record size is greater than the block or CI size, then use one RAP
per block or CI.

226 IMS Performance and Tuning Guide

� HD databases do a Format Logical Cylinder, so always allocate on full cylinder
boundaries.

� Different data set groups have separate bitmaps. Therefore, if there are long segments in
the database, by using different data set groups, you would be able to insert the smaller
segments if space was available.

� If a database is going to be HDAM, root only, no indexes, and very stable (that is, no
inserts, no deletes, and no replaces), then go with SHISAM, it outperforms HDAM.

� Use the byte limit count only if you have a known performance problem.

A.5 HIDAM
HIDAM considerations are:

� Two databases (logically related).

� Two data sets at minimum (up to eleven with data set groups).

� Primary database can be OSAM or VSAM.

� Primary index database is a VSAM KSDS.

� One VSAM Record per CI.

� One or more database record per “VSAM record.”

� Access to root is through the index database.

� Access to dependent segments is through pointers.

� Segment Prefix: Segment code, delete byte, and pointers.

� Default pointers are Physical Twin Forward and Physical Child First.

� CI size is determined in the define cluster, not in the DBD if VSAM.

� FREESPACE is determined in the Primary DBD, not the define cluster.

� FREESPACE is determined in the define cluster, not in the DBD for primary and
secondary indexes along with CI size.

� In HIDAM, on an open of an empty primary index, IMS inserts a high values record.

� Index database requires additional I/O.

� Good for sequential access to database roots (index).

� Good for random access to:

– Database roots.

– Segments within a database record.

� Use for volatile database records:

– Insert activity: Look for FREESPACE, do not move other blocks.

– Delete activity: Deleted space can be reused.

� Good for database records whose lengths vary widely.

A.5.1 HIDAM performance general guidelines
The suggested rules are:

� Only put on the pointers that are needed. The fewer the number of pointers, the less
maintenance that IMS has to perform and, therefore, the faster the application.

Appendix A. Guidelines and recommendations 227

� HD databases do a Format Logical Cylinder, so always allocate on full cylinder
boundaries.

� Keep segments to be accessed in the same block as the entry segment.

� FREESPACE should be large enough to insert the largest segment type, including its
prefix.

� Code large block sizes, such as 18 K or 26 K.

� Code SCAN=0.

� Code pointer of Twin-Backward or No-Twin on the root (reduces lock conflicts on inserts).

� If you are coding FREESPACE, code free blocks and use the second-most desirable
block, code SEARCHA=2.

� Unsequenced Segments:

– Use insert rules as follows:

• (,FIRST)

• (,LAST) with Physical Child Last pointer

– Sequence segments only if required.

– Use “9s complement” if adding higher keys.

� Different data set groups have separate bitmaps. Therefore, if there are long segments in
the database, by using different data set groups, you are able to insert the smaller
segments if space was available.

A.6 OSAM
OSAM considerations are:

� Maximum of 60 DASD extents.

� Maximum data set size:

– 8 gigabytes for HIDAM and HDAM.

– 4 gigabytes for everything else.

� Fixed length records, unblocked.

� Data set allocation:

– Can be done at either load time through JCL or preallocated.

– DCB parameters must not be specified.

– Include secondary space if data set is going to expand.

� Only preallocate the number of volumes for data set extents that are used during initial
load or reload process.

� Do not reuse multivolume data set extents without first scratching and reallocating the
space.

� OSAM sequential buffers are dynamically allocated by IMS in the region's extended
private address space, above the 16 megabyte line.

A.6.1 OSAM tuning general guidelines
The suggested tuning rules are:

� 60% or better hit ratio.

228 IMS Performance and Tuning Guide

� Always page fix buffer prefixes.

� Page fix buffers if real storage permits.

� Isolate high activity databases in their own subpool.

� Match block size with a valid OSAM buffer size.

� For sequential-read BMPs and batch:

– Use the largest block size possible.

– Use sequential buffering.

– Use cache controller.

� OSAM sequential buffering treats overflow and the RAA of a HDAM database differently.
Sequential buffering looks at overflow to see if it is needed.

A.7 VSAM tuning general rules
The following are good rules to use:

� For sequential processing, use the largest block size possible.

� Cache IMS indexes.

� 90% or better hit ratio for index component of a KSDS.

� 60% or better hit ratio for data component of a KSDS or ESDS.

� Use VSAM Background Write.

� KSDS:

– Cache the data set.

– Support with HIPERSPACE.

– Index Component:

• Separate buffer subpool from data component.

• Keep in main storage.

• Allocate to an index subpool.

• Page fix (FIXINDEX=YES).

– Data Component:

• Separate buffer subpool from index component.

• Allocate to an data subpool.

• Page fix (FIXDATA=YES) if real storage allows.

� Match CI size with a valid IMS/VSAM buffer size.

� Dedicate VSAM subpools to specific databases.

� Page fix control blocks (and buffers, if enough real storage).

� If NUMBER OF VSAM WRITES TO MAKE SPACE IN THE POOL from the DC Monitor
VSAM Buffer Pool report is not zero, increase the number of buffers for the subpool.

� Track SCHBFR CALLS from the DC Monitor VSAM Buffer Pool report; are they
increasing? Then it is time to reorganize.

� Verify BMP checkpoint frequency.

� VSAM takes a complete CI to satisfy FREESPACE, not part of one.

Appendix A. Guidelines and recommendations 229

� IMS always uses one CI.

� The record size of a KSDS must be even.

� Put data and index data sets of a KSDS on different volumes.

� VSAM overhead for IMS indexes (if there are going to be more than one record in the CI,
which is almost always) is 10 bytes.

� VSAM overhead for ESDS for HIDAM and HDAM is 7 bytes.

� A VSAM ESDS used with IMS does not use FREESPACE, do not code it on the VSAM
delete define. Code the FREESPACE in the DBD.

� If you are allocating a VSAM data set using tracks, code the primary and secondary
allocation the same.

� There should only be at most three levels in the VSAM index. If not, change the index CI
size.

A.7.1 VSAM data set tuning general guidelines
VSAM data set tuning general rules are:

� Cache IMS indexes.

� VSAM takes a complete CI to satisfy free space, not part of one.

� IMS always uses one CI.

� The record size of a KSDS must be even.

� Put data and index data sets of a KSDS on different volumes.

� VSAM overhead for IMS indexes (if there are going to be more than one record in the CI,
which is almost always) is 10 bytes.

� VSAM overhead for ESDS for HIDAM and HDAM is 7 bytes.

� A VSAM ESDS used with IMS does not use free space, do not code it on the VSAM delete
define. Code the free space in the DBD.

� If you are allocating a VSAM data set using tracks, code the primary and secondary
allocation the same.

� There should only be at most three levels in the VSAM index. If not, change the index CI
size.

A.7.2 ESDS performance guidelines
ESDS performance guidelines are:

� Use IMS FRSPC=(fbff,fspf) for HIDAM ISRT.
� Larger CIs:

– Improve sequential processing.
– Reduce number of IWAITS.
– Increase IWAIT time per IWAIT.
– Decrease total IWAIT time.

� Smaller CIs:
– Improve random processing.

No longer provides much benefit, because current disk devices read large blocks of
data anyway.

– Can increase number of IWAITS.
– Reduce IWAIT time per IWAIT.

� Consider CI “fit” to DASD track.

230 IMS Performance and Tuning Guide

A.7.3 KSDS performance guidelines
KSDS performance guidelines are:

� Place behind cache.
� Use DASD fast write.
� Minimize levels of index.
� Minimize CI split activity.
� Keep CA splits below four between reorganizations.
� Place index and data:

– On separate volumes/paths.
– In separate buffer subpools.
– Entirely in memory (HYPERSPACE).

� Page fix index buffers.
� Page fix data buffers if memory allows.
� Consider CI “fit” to DASD track.
� Keep index components of a KSDS as available as possible.
� KSDS index buffer should be fix index, fix data, fix block.
� KSDS data buffer should be fix block.

A.8 Secondary index performance guidelines
Secondary index performance guidelines are:

� Use for alternate entry only.

� Use direct pointers.

� Avoid volatile source segments.

� Avoid volatile search and SUBSEQ fields.

� Use sparse indexing when possible.

� “Force” unique keys using SUBSEQ.

� Process a maximum of 10% of the target database records within a single synchronization
interval.

� Use duplicate data and process just the index.

� Use sparse indexes if possible.

� If you have an index rebuilding tool:

– Do not back up your indexes.
– Register your indexes to DBRC as nonrecoverable.

Appendix A. Guidelines and recommendations 231

A.9 Block or CI size performance guidelines
Block or CI size performance guidelines are:

� Larger CIs or blocks:
– Improve sequential processing.
– Reduce the number of IWAITS.
– Increase IWAIT time per IWAIT.
– Decrease total IWAIT time.

� Smaller CIs or blocks might:
– Improve random processing.
– Increase number of IWAITS.
– Reduce IWAIT time per IWAIT.

A.10 FREESPACE performance guidelines
FREESPACE guidelines are:

� Purpose: Minimize CI/CA split activity:
– No additions: No need for FREESPACE.
– Few additions: No FREESPACE or some FREESPACE in the CI.
– Evenly distributed additions:

FREESPACE in the CA or FREESPACE in both CI and CA.
– Unevenly distributed additions:

Specify a small amount of FREESPACE.
� FREESPACE cost:

– Additional DASD space which might remain unused.
– Additional I/O to sequentially process the same number of records.
– Additional number of index records (levels).

A.11 Segment edit/compression performance considerations
The considerations are:

� Improves DASD space utilization (more data in block)
� Improves buffer space utilization
� Might reduce I/O
� Increases CPU time unless you are using Hardware Data Compression

A.12 Programming performance considerations
The considerations are:

� Reduce the number of DLI calls:
– Use path calls.
– Eliminate redundant calls.
– Use single segment input messages.
– Send single segment output messages.

� Reduce the number of I/O IWAITS:
– Use fully qualified calls.
– Use XDFLD name in SSA when PCB has PROCSEQ.
– Do not use PROCOPT=GOT, use PROCOPT=GON.

232 IMS Performance and Tuning Guide

� Reduce lock contention.
Use the minimum PROCOPT needed for processing.

A.13 Logging performance considerations
Performance reflected in DLI-NOT-IWAIT time:

� Make database buffer subpools large (avoid LWA due to buffer flush).

� Use VSAM background write.

� Define databases as unrecoverable.

� Use 24 K or 28 K blocking. This allows the OLDS buffers to be placed in real storage
above the 2 GB bar (by being multiples of 4 K).

A.14 Use HDAM physical sequence sort and reload
HDAM physical sequence sort and reload:

� Functions:
– Sorts an unload database into load sequence.
– Reduces cascading by loading some records last.
– Provides tuning analysis reports:

• DBD parameters and overrides.
• Assigned roots per RAP.

– Provides database record size and distribution information.
� Benefits:

– Reduces elapsed time to reload.
– Converts to HDAM.
– Changes HDAM parameters.
– Analyzes HDAM tuning parameters.

A.15 I/O error processing
When I/O errors occur for databases, the following things happen:

1. The database that has an I/O error is NOT stopped.

2. An Extended Error Queue Element (EEQE) is created for the block or CI. It identifies the
block or Control Interval and the type of error.

3. A DFS0451A or DFS0451I message is issued indicating that a read or write error occurred
during an I/O operation. This message is only issued once for each block or CI, which has
an I/O error.

4. For read errors:

a. An “AO” status code is returned for the DL/I call.

b. The read is retried for each future request for the block or CI.

5. For write errors:

a. No status code is returned.

b. The block or CI is moved to a virtual buffer for future reference.

c. If the database is registered to DBRC. The DBDS record in the RECON is updated with
the error information (EEQE), the “recovery needed” flag in the DBRC DBDS record is

Appendix A. Guidelines and recommendations 233

turned on, and the “recovery needed” counter in the DBRC DB record is incremented.
Further subsystem authorization is NOT denied.

d. The virtual buffer is logged when it is created or changed and at each system
checkpoint.

e. Any read request for data contained in the virtual buffer is read from it. DASD is not
accessed.

f. Any write requests for blocks with previously allocated buffers result in a move of the
database buffer to the virtual buffer. DASD is not accessed.

A.16 What is a Kilobyte
BIT = BInary digiT a 0 or 1

Nibble = 4 BITs

Byte = 8 BITs

Kilobyte = 8,192 BITs

Megabyte = 8,388,608 BITs

Gigabyte = 8,589,934,592 BITs

Terabyte = 8,796,093,022,208 BITs

Petabyte = 9,007,199,254,740,992 BITs

Exabyte = 9,223,372,036,854,775,808 BITs

Zettabyte = 9,444,732,965,739,290,427,392 BITs

Yottabyte = 9,671,406,556,917,033,397,649,408 BITs

Xonabyte = 9,903,520,314,283,042,199,192,993,792 BITs

Wekabyte = 10,141,204,801,825,835,211,973,625,643,008 BITs

Vundabyte = 10,384,593,717,069,655,257,060,992,658,440,192 BITs

Kilobyte = 1,024 bytes or 210

Megabyte = 1,048,576 bytes or 220

Gigabyte = 1,073,741,824 bytes or 230

Terabyte = 1,099,511,627,776 bytes or 240

Petabyte = 1,125,899,906,842,624 bytes or 250

Exabyte = 1,152,921,504,606,846,976 bytes or 260

Zettabyte = 1,180,591,620,717,411,303,424 bytes or 270

Yottabyte = 1,208,925,819,614,629,174,706,176 bytes or 280

234 IMS Performance and Tuning Guide

Xonabyte = 1,237,940,039,285,380,274,899,124,224 bytes or 290

Wekabyte = 1,267,650,600,228,229,401,496,703,205,376 bytes or 2100

Vundabyte = 1,298,074,214,633,706,907,132,624,082,305,024 bytes or 2110

Appendix A. Guidelines and recommendations 235

236 IMS Performance and Tuning Guide

Appendix B. Coding examples

This appendix provides two examples for coding sparse indexes.

B

© Copyright IBM Corp. 2006. All rights reserved. 237

B.1 Sparse index examples
There are two ways to suppress entries into the secondary index. One way is on the source
segment. With this technique, some field in the source segment is compared to a constant
and if they match, an index entry is not created. The second method compares some field in
the secondary index fields themselves to find a match. If they match, then an index is not
created.

B.1.1 Source segment
With this technique, some field in the source segment is compared to a constant and if they
match, an index entry is not created.

Example: B-1 Source segment technique

 1 2 3 4 5 6 7
12345678901234567890123456789012345678901234567890123456789012345678901
 |
TITLE 'sysAA1er INDEX MAINTENANCE ROUTINE'
**
* A P P L I C A T I O N N A M E *
* *
* THIS MODULE IS CALLED BY DL/I FROM THE sysDaaP1 DATABASE. *
* IF THE ACTVITY_CODE IS EITHER 'A' OR 'T' CREATE AN INDEX *
* ENTRY IN INDEX sysDaaS1. *
* *
* REGISTER ASSIGNMENTS AT ENTRY TO SYSAA1ER: *
* R1 - PARTITION SPECIFICATION TABLE (PST) ADDRESS. *
* R2 - ADDRESS OF (PROPOSED OR EXISTING) INDEX SEGMENT. *
* R3 - ADDRESS OF INDEX MAINTENANCE ROUTINE PARMS SEGMENT. *
* R4 - ADDRESS OF INDEX SOURCE SEGMENT. *
* R13 - SAVE AREA ADDRESS. *
* R14 - RETURN TO IMS ADDRESS. *
* R15 - ENTRY POINT ADDRESS OF THE EXIT ROUTINE. *
* *
* REGISTER ASSIGNMENTS AT EXIT FROM SYSAA1ER: *
* R0 THROUGH R13 ARE RESTORED. *
* R14 - RETURN TO IMS ADDRESS. *
* R15 - 0 TO NOT SUPPRESS THE INDEX ENTRY. *
* - 4 TO SUPPRESS THE INDEX ENTRY. *
* *
**
* *
*LINKOPT: AMODE=31,RMODE=ANY,RENT,REUS *
* *
**
*
sysAA1er START
*
**
* REGISTER EQUATES *
**
*

238 IMS Performance and Tuning Guide

R0 EQU 0
R1 EQU 1
R2 EQU 2
R3 EQU 3
R4 EQU 4
R5 EQU 5
R6 EQU 6
R7 EQU 7
R8 EQU 8
R9 EQU 9
R10 EQU 10
R11 EQU 11
R12 EQU 12
R13 EQU 13
R14 EQU 14
R15 EQU 15
*
**
* SET UP THE ENVIRONMENT. *
**
*
INITIAL DS 0H
*
 STM R14,R12,12(R13) SAVE REGISTERS 14 THRU 12
 LR R12,R15 LOAD R12 WITH ENTRY ADDRESS
 USING sysAA1er,R12 USE R12 AS BASE ADDR OF EXIT ROUTINE
 USING SECINDEX,R2 USE R2 AS BASE ADDR OF INDEX SEGMENT
 USING SECSOURX,R4 USE R4 AS BASE ADDR OF SOURCE SEGMENT
 LA R15,4 LOAD 4 INTO R15 TO SUPPRESS INDEX
*
**
* CHECK TO SEE IF WE WANT TO SUPPRESS THE INDEX ENTRY. *
**
*
CHKL1 DS 0H
* IF ACTIVITY_CODE IS AN "A"
 CLC sysEaade,ATYP THEN WRITE INDEX
 BE CREATESX ELSE
* CHECK SOME MORE
* IF ACTIVITY_CODE IS A "T"
 CLC sysEaade,TTYP THEN WRITE INDEX
 BNE WRAPUP ELSE
* DO NOT WRITE INDEX
*
**
* CREATE INDEX ENTRY. *
**
*
CREATESX DS 0H
*
 SR R15,R15 CREATE SPARSE INDEX (4 - 4 = 0)
*
**
* DO NOT CREATE INDEX ENTRY. *
**

Appendix B. Coding examples 239

*
WRAPUP DS 0H
*
 ST R15,16(,R13) STORE R15 IN SAVE REGISTER R15
 LM R14,R12,12(R13) RESTORE REGISTERS FOR RETURN
 SPM R14 SET PROGRAM MASK
 BR R14 BRANCH TO CALLING PROGRAM
 EJECT
*
**
* PROGRAM INFORMATION AND THE LIKE. *
**
*
PGMINFO DS 0H
*
 DC CL8'sysAA1er' PROGRAM NAME
 DC CL9' &SYSDATE' DATE ASSEMBLED
 DC CL9' &SYSTIME' TIME ASSEMBLED
*
**
* DEFINE WHAT WE ARE LOOKING FOR. *
**
*
ATYP DC CL01'A' THIS IS A "A" RECORD
TTYP DC CL01'T' THIS IS A "T" RECORD
 EJECT
*
**
* DEFINE WHAT THE SECONDARY INDEX SEGMENT LOOKS LIKE. *
**
*
SECINDEX DSECT SECONDARY INDEX SEGMENT
sysSaaS1 DS 0CL19 ACCOUNT ACTIVITY INDEX SEGMENT
sysEaa11 DS CL008 FILL UP TO FIELD WE WANT
sysEaa1A DS CL002 WORK_ACTIVITY_CODE
sysEaa12 DS CL009 FILL UP TO THE END
*
**
* DEFINE WHAT THE SECONDARY INDEX SOURCE SEGMENT LOOKS LIKE. *
**
*
SECSOURX DSECT SECONDARY INDEX SOURCE SEGMENT
sysSaa00 DS 0CL196 ACCOUNT ACTIVITY SEGMENT
sysEaaF1 DS CL019 FILL UP TO FIELD WE WANT
sysEaaDE DS CL001 ACTIVITY_CODE
sysEaaF2 DS CL176 FILL UP TO THE END
*
**
* EXIT *
**
*
*
 END

240 IMS Performance and Tuning Guide

B.1.2 Index segment
This method compares some field in the secondary index fields themselves to find a match. If
they match, then an index is not created.

Example: B-2 Index segment method

 1 2 3 4 5 6 7
12345678901234567890123456789012345678901234567890123456789012345678901
 |
 TITLE 'SYSAA1ER INDEX MAINTENANCE ROUTINE'
**
* A P P L I C A T I O N N A M E *
* *
* THIS MODULE IS CALLED BY DL/I FROM THE SYSDAAP1 DATABASE. *
* IF THE WORK_ACTIVITY_CODE IS EITHER 'A' OR 'T' CREATE AN INDEX *
* ENTRY IN INDEX SYSDAAS1. *
* *
* REGISTER ASSIGNMENTS AT ENTRY TO SYSAA1ER: *
* R1 - PARTITION SPECIFICATION TABLE (PST) ADDRESS. *
* R2 - ADDRESS OF (PROPOSED OR EXISTING) INDEX SEGMENT. *
* R3 - ADDRESS OF INDEX MAINTENANCE ROUTINE PARMS SEGMENT. *
* R4 - ADDRESS OF INDEX SOURCE SEGMENT. *
* R13 - SAVE AREA ADDRESS. *
* R14 - RETURN TO IMS ADDRESS. *
* R15 - ENTRY POINT ADDRESS OF THE EXIT ROUTINE. *
* *
* REGISTER ASSIGNMENTS AT EXIT FROM SYSAA1ER: *
* R0 THROUGH R13 ARE RESTORED. *
* R14 - RETURN TO IMS ADDRESS. *
* R15 - 0 TO NOT SUPPRESS THE INDEX ENTRY. *
* - 4 TO SUPPRESS THE INDEX ENTRY. *
* *
**
* *
*LINKOPT: AMODE=31,RMODE=ANY,RENT,REUS *
* *
**
*
SYSAA1ER START
*
**
* REGISTER EQUATES *
**
*
R0 EQU 0
R1 EQU 1
R2 EQU 2
R3 EQU 3
R4 EQU 4
R5 EQU 5
R6 EQU 6
R7 EQU 7
R8 EQU 8

Appendix B. Coding examples 241

R9 EQU 9
R10 EQU 10
R11 EQU 11
R12 EQU 12
R13 EQU 13
R14 EQU 14
R15 EQU 15
*
**
* SET UP THE ENVIRONMENT. *
**
*
INITIAL DS 0H
*
 STM R14,R12,12(R13) SAVE REGISTERS 14 THRU 12
 LR R12,R15 LOAD R12 WITH ENTRY ADDRESS
 USING SYSAA1ER,R12 USE R12 AS BASE ADDR OF EXIT ROUTINE
 USING SECINDEX,R2 USE R2 AS BASE ADDR OF INDEX SEGMENT
 USING SECSOURX,R4 USE R4 AS BASE ADDR OF SOURCE SEGMENT
 LA R15,4 LOAD 4 INTO R15 TO SUPPRESS INDEX
*
**
* CHECK TO SEE IF WE WANT TO SUPPRESS THE INDEX ENTRY. *
**
*
CHKL1 DS 0H
* IF WORK_ACTIVITY_CODE IS AN "A"
 CLC SYSEAA1A,ATYP THEN WRITE INDEX
 BE CREATESX ELSE
* CHECK SOME MORE
* IF WORK_ACTIVITY_CODE IS A "T"
 CLC SYSEAA1A,TTYP THEN WRITE INDEX
 BNE WRAPUP ELSE
* DO NOT WRITE INDEX
*
**
* CREATE INDEX ENTRY. *
**
*
CREATESX DS 0H
*
 SR R15,R15 CREATE SPARSE INDEX (4 - 4 = 0)
*
**
* DO NOT CREATE INDEX ENTRY. *
**
*
WRAPUP DS 0H
*
 ST R15,16(,R13) STORE R15 IN SAVE REGISTER R15
 LM R14,R12,12(R13) RESTORE REGISTERS FOR RETURN
 SPM R14 SET PROGRAM MASK
 BR R14 BRANCH TO CALLING PROGRAM
 EJECT
*

242 IMS Performance and Tuning Guide

**
* PROGRAM INFORMATION AND THE LIKE. *
**
*
PGMINFO DS 0H
*
 DC CL8'SYSAA1ER' PROGRAM NAME
 DC CL9' &SYSDATE' DATE ASSEMBLED
 DC CL9' &SYSTIME' TIME ASSEMBLED
*
**
* DEFINE WHAT WE ARE LOOKING FOR. *
**
*
ATYP DC CL01'A' THIS IS A "A" RECORD
TTYP DC CL01'T' THIS IS A "T" RECORD
 EJECT
*
**
* DEFINE WHAT THE SECONDARY INDEX SEGMENT LOOKS LIKE. *
**
*
SECINDEX DSECT SECONDARY INDEX SEGMENT
SYSSAAS1 DS 0CL19 ACCOUNT ACTIVITY INDEX SEGMENT
SYSEAA11 DS CL008 FILL UP TO FIELD WE WANT
SYSEAA1A DS CL002 WORK_ACTIVITY_CODE
SYSEAA12 DS CL009 FILL UP TO THE END
*
**
* DEFINE WHAT THE SECONDARY INDEX SOURCE SEGMENT LOOKS LIKE. *
**
*
SECSOURX DSECT SECONDARY INDEX SOURCE SEGMENT
SYSSAA00 DS 0CL196 ACCOUNT ACTIVITY SEGMENT
SYSEAAF1 DS CL019 FILL UP TO FIELD WE WANT
SYSEAADE DS CL001 ACTIVITY_CODE
SYSEAAF2 DS CL176 FILL UP TO THE END
*
**
* EXIT *
**
*
*
 END

Appendix B. Coding examples 243

244 IMS Performance and Tuning Guide

ronyms

ACEE Access Control Environment
Element

AGN Application Group Name

AIB Application Interface Block

APF Authorized Program Facility

APPC Advanced Program to Program
Communication

BPE Base Primitive Environment

CCF Common Connector Framework

CGI Common Gateway Interface

CICS Customer Information Control
System

CSM Complete Status Message

CTG CICS Transaction Gateway

DB2 DATABASE 2

DBCTL Database Control

DBD Database Description

DRA Database Resource Adapter

DVIPA dynamic virtual IP addressing

EAB Enterprise Access Builder

ECB Event Control Block

EMH Expedited Message Handler

FTP File Transfer Protocol

GUI graphical user interface

HTML Hyper Text Markup Language

HTTP Hyper Text Transfer Protocol

IBM International Business Machines
Corporation

IMS Information Management System

IMS TOC IMS TCP/IP OTMA Connection

IPCS Interactive Problem Control System

IPL Initial Program Load

IRM IMS Request Message

ISC Intersystem Communication

ISPF Interactive Systems Productivity
Facility

ITOC IMS TCP/IP OTMA Connection

ITSO International Technical Support
Organization

IVP Installation Verification Program

J2C J2EE Connector Architecture

J2EE JAVA 2 Platform Enterprise Edition

Abbreviations and ac

© Copyright IBM Corp. 2006. All rights reserved.
JCA J2EE connector architecture

JCL Job Control Language

JDBC Java Database Connectivity

JDK Java Development Kit

JRE™ Java Runtime Environment

JSP™ Java Server Pages

JVM Java Virtual Machine

LAN local area network

LPAR logical partition

LTERM logical terminal

LU logical unit

LU2 logical unit 2

MCI message control information

MFS message format services

MOD message output descriptor

MPP message processing program

MSC Multiple Systems Coupling

MVS Multiple Virtual System

ODBA Open Database Access

OO object-oriented

OTMA Open Transaction Manager Access

OTMA C/I OTMA Callable Interface

PC personal computer

PCB Program Communication Block

PPT Program Properties Table

PSB Program Specification Block

PST Partition Specification Table

RACF Resource Access Control Facility

RAR resource archive

RMM Request MOD Message

RRS/MVS Resource Recovery Services/MVS

RSM™ request status message

SGML Standard Generalized Markup
Language

SMB scheduler message block

SMP/E System Modification
Program/Extended

SNA System Network Architecture

SOA service-oriented architecture

SOAP simple object access protocol

STSN Set and Test Sequence Numbers
 245

SVL Silicon Valley Laboratories

TCB task control block

TCP/IP Transmission Control
Protocol/Internet Protocol

Tpipe transaction pipe

TPIPE transaction pipe

UOR unit of recovery

W3C World Wide Web Consortium

WAN wide area network

WAS WebSphere Application Server

VIPA Virtual IP Addressing

WLM workload manager

WSDL Web Service Definition Language

WWW World Wide Web

XCF cross system coupling facility

XML Extensible Markup Language

246 IMS Performance and Tuning Guide

 Abbreviations and acronyms 247

248 IMS Performance and Tuning Guide

Related publications

The publications listed in this section are considered particularly suitable for a more detailed
discussion of the topics covered in this redbook.

IBM Redbooks
For information about ordering these publications, see “How to get IBM Redbooks” on
page 251. Note that some of the documents referenced here may be available in softcopy
only.

� IMS Version 7 Performance Monitoring and Tuning Update, SG24-6404

� IMS e-business Connectors: A Guide to IMS Connectivity, SG24-6514

� Ensuring IMS Data Integrity Using IMS Tools, SG24-6533

� IMS Installation and Maintenance Processes, SG24-6574

� IMS Version 8 Implementation Guide - A Technical Introduction of the New Features,
SG24-6594

� IMS DataPropagator Implementation Guide, SG24-6838

� Using IMS Data Management Tools for Fast Path Databases, SG24-6866

� IMS in the Parallel Sysplex, Volume I: Reviewing the IMSplex Technology, SG24-6908

� IMS in the Parallel Sysplex, Volume II: Planning the IMSplex, SG24-6928

� IMS in the Parallel Sysplex, Volume III: Operations and Implementation, SG24-6929

� The Complete IMS HALDB Guide, All You Need to Know to Manage HALDBs, SG24-6945

� Reorganizing Databases Using IMS Tools - A Detailed Look at the IBM IMS High
Performance Tools, SG24-6074

� IMS Version 9 Implementation Guide - A Technical Overview, SG24-6398

� IMS Connectivity in an On Demand Environment: A Practical Guide to IMS Connectivity,
SG24-6794

� System Programmers Guide to: Workload Manager, SG24-6472

� IBM eServer zSeries 990 (z990) Cryptography Implementation, SG24-7070

Other publications
These publications are also relevant as further information sources:

� IMS Version 9: Administration Guide: Database Manager, SC18-7806

� IMS Version 9: Administration Guide: System, SC18-7807

� IMS Version 9 Administration Guide: Transaction Manager, SC18-7808

� IMS Version 9 Application Programming: Database Manager, SC18-7809

� IMS Version 9 Application Programming: Design Guide, SC18-7810

� IMS Version 9 Application Programming: EXEC DL/I Commands for CICS & IMS,
SC18-7811

© Copyright IBM Corp. 2006. All rights reserved. 249

� IMS Version 9 Application Programming: Transaction Manager, SC18-7812

� IMS Version 9 Base Primitive Environment Guide and Reference, SC18-7813

� IMS Version 9 Command Reference, SC18-7814

� IMS Version 9 Common Queue Server Guide and Reference, SC18-7815

� IMS Version 9 Common Service Layer Guide and Reference, SC18-7816

� IMS Version 9: Customization Guide, SC18-7817

� IMS Version 9 Database Recovery Control Guide and Reference, SC18-7818

� IMS Version 9 Diagnosis Guide and Reference, LY37-3203

� IMS Version 9 Failure Analysis Structure Tables (FAST) for Dump Analysis, LY37-3204

� IMS Version 9: IMS Java Guide and Reference, SC18-7821

� IMS Version 9 Installation Volume 1: Installation and Verification, GC18-7822

� IMS Version 9 Installation Volume 2: System Definition and Tailoring, GC18-7823

� IMS Version 9 Licensed Program Specifications, GC18-7825

� IMS Version 9 Master Index and Glossary, SC18-7826

� IMS Version 9: Messages and Codes Volume 1, GC18-7827

� IMS Version 9 Messages and Codes, Volume 2, GC18-7828

� IMS Version 9: Open Transaction Manager Access Guide and Reference, SC18-7829

� IMS Version 9 Operations Guide, SC18-7830

� IMS Version 9 Release Planning Guide, GC17-7831

� IMS Version 9 Summary of Commands, SC18-7832

� IMS Version 9 Utilities Reference: Database Manager and Transaction Manager,
SC18-7833

� IMS Version 9 Utilities Reference: System, SC18-7834

� IMS Version 9: IMS Connect Guide and Reference, SC18-9287

� IMS Connect Extensions for z/OS User's Guide, SC18-7255

� IBM IMS Performance Analyzer for z/OS User’s Guide, SC18-9778

� IBM IMS Performance Analyzer for z/OS Report Analysis, SC27-0913

� Program Directory for IBM IMS Connect Extensions for z/OS, GI10-8504

� Program Directory for IBM IMS Connect for z/OS, GI10-8506

� Program Directory for IBM Information Management System Transaction and Database
Servers, GI10-8594

� A Guide to IMS Hardware Data Compression, WP100416

� Using IBM Tivoli OMEGAMON XE for IMS on z/OS, GC32-9351

� IBM Tivoli OMEGAMON II for IMS Transaction Reporting Facility, GC32-9358

� IMS on Demand Database Access and IMS Control Center presentation

� IMS and Language Environment presentation

� Using Log Records for IMS Diagnosis, Part 1 & 2, B66 presentation from the IMS
Technical Conference in San Jose, CA, October 10 - 13, 2005

� IMS Database Performance and Tuning (Course Code CMW30)

� IMS TM Performance and Tuning (Course Code CMW21)

250 IMS Performance and Tuning Guide

� IMS Database Application Programming (Course Code CM17)

� Performance Comparison between traditional Programming languages and Java on an
IMS System based on a TPC Benchmark, white paper

� DB2 Universal Database for z/OS Administration Guide, SC18-7413

� New Tools for DB2 for OS/390 and z/OS Presentation Guide, SG24-6139

� DB2 UDB for z/OS Version 8 Performance Topics, SG24-6465

Online resources
These Web sites and URLs are also relevant as further information sources:

� IMS Home Page:

http://www.ibm.com/ims/

� IBM Redbooks

http://www.ibm.com/redbooks

How to get IBM Redbooks
You can search for, view, or download Redbooks, Redpapers, Hints and Tips, draft
publications and Additional materials, as well as order hardcopy Redbooks or CD-ROMs, at
this Web site:

ibm.com/redbooks

Help from IBM
IBM Support and downloads

ibm.com/support

IBM Global Services

ibm.com/services

 Related publications 251

http://www.ibm.com/ims/
http://www.ibm.com/redbooks
http://www.redbooks.ibm.com/
http://www.redbooks.ibm.com/
http://www.ibm.com/support/
http://www.ibm.com/support/
http://www.ibm.com/services/
http://www.ibm.com/services/

252 IMS Performance and Tuning Guide

Index

Symbols
/CHANGE CPLOG command 131
/CHE STATISTICS command 30
/DIS FPVIRTUAL command 96
/DIS OLDS 164
/DIS POOL ALL command 139, 147
/DIS POOL command 134, 139
/DIS POOL DMBP command 146
/DIS POOL FPDB command 99, 132
/RML RECON STATUS 164
/SSR command 195
/STA AREA command 99
/START AREA command 95
/TRA SET ON LINK n command 30
/TRA SET ON MON ALL command 139
/TRACE command 17, 21
/TRACE SET OFF MONITOR command 107, 119
/TRACE SET ON MONITOR ALL command 107, 119
/VUNLOAD command 100

Numerics
64-bit support 157

A
ACBLIB

I/Os 5, 15, 126
load 5

access methods 53–54, 58, 60–61, 77, 83, 115
HIDAM 60
HISAM 58
OSAM 60
VSAM 60

ACK 214
APPC 165, 207
application design xiii, 5, 53, 189
asynchronous output 213–214

B
BGWRT 117–118
BIND CURRENT DATA parameter 190
BIND ISOLATION parameter 190
BLDL 127
block mover 148
BPXPRMxx 214
buffer invalidation 177
buffer pools 16, 22, 43, 51, 82, 97–99, 131, 135, 139,
144, 152, 193, 206

Database Work Area Pool (DBWP) 146
DMB Pool (DMBP) 145

C
CA splits 162

© Copyright IBM Corp. 2006. All rights reserved.
capacity planning 4, 11
CFRM 204, 208
CFSIZER 205, 207
CHANGE.DB command 65, 104
CHANGE.DBDS 94
CHANGE.PART command 67, 70, 72–73
CHANGE.RECON REPLACE 163–164
CHANGE.RECON REPLACE(xxx) command 159, 162
CI splits 162
CIOP pool 6
class scheduling 15, 126, 128
CNBA 150
COBOL 127–128, 170–171, 175, 180, 218–221

options 127, 180
COMM macro 138
contention 35, 51, 90–91, 93, 100, 104, 109, 128, 140,
144, 161, 177, 190, 203–206, 233

buffer handler 109
conversational 28
conversations 135
Coupling Facility 91, 98–99, 207, 212
CPLOG 151
CPU resource 121, 143
CPU usage 36, 48–50, 203, 207
CSA 136, 141, 145
cursor 190, 192

D
data sharing 1, 36, 64, 90, 92, 96, 98, 100, 142, 162, 176,
203–206
DATABASE 75, 193, 238, 241
database buffers 67, 101, 141
database reorganization 115
database structures 54–56
datastore 42, 216
DB/DC 11–13, 17, 165–166
DB2 xiv, 6, 21, 24, 42–43, 48, 87, 165, 183–193,
195–200, 217

BIND ACQUIRE parameter 189
BIND RELEASE parameter 190
Dynamic SQL 191
IMS monitor 192, 195
IMS Performance Analyzer 192
Locking considerations 189
SSM 185
Static SQL 191
Thread creation and termination 188
Tuning the External Subsystem Attach Facility 187

DB2 Tools 193
DB2 Performance Monitor (DB2PM) 193
DB2 Query Monitor Tool 193
DB2 Trace Facility 193
SQL Performance Analyzer 193

DB2PM 193
 253

DBBF 92, 101, 131, 150–151
DBCTL xiv, 11, 17, 22, 24, 29–30, 32–33, 57, 101, 131,
149–153, 165–166, 176, 183–184

DRA startup 150
MINTHRD and MAXTHRD 150

DBFULTA0 32, 34, 99, 102
DBFX 101, 131, 151
DBRC 26, 49, 57, 65, 67, 70, 72–73, 93–95, 104, 142,
155, 158–160, 162–164, 176, 231, 233–234

commands 65, 72
dispatching priority 142
RECON data sets 159, 162

DBRC SHARECTL 176
deadlock 27, 94, 141–142, 192, 198, 203

DB2 192
DEADLOK 203
DEDB 7, 33–34, 56–57, 90–97, 99–103, 131–132, 136,
147, 151, 178, 205

general performance considerations 91
OTHREAD contention 91

DELETE 101, 163, 192, 199
DELETE.LOG INACTIVE 162
dependent region 4, 13, 15, 25, 48–49, 101, 109, 126,
128, 136–137, 142–143, 147, 175, 185–186, 188, 198,
203
DFSBSEX0 166
DFSERA10 20, 27, 140, 192, 198
DFSERA30 27, 192, 198–199
DFSHDC40 72–73, 76, 226
DFSILTA0 27
DFSISTS0 27
DFSPBxxx 144, 151, 165
DFSPBxxx member 130–131, 137, 144
DFSPSBxx member 137
DFSPZPxx 150
DFSUARC0 143
DFSUTR20 21, 139
DFSVSMxx member 24, 97, 106, 115, 120, 141, 203

VSAMFIX 141
dispatching priority 50, 52, 142–143

dependent regions 142–143
IRLM 142
IRLM address space 142

DL/I 3–7, 9–10, 15, 17, 22–25, 28, 33, 54, 60, 76, 90–91,
93, 118, 126–129, 136, 138–139, 141, 143, 145,
170–173, 175, 187, 189–190, 197, 217, 233, 238, 241
DLS address space 143
DRA 17
DSN 35–36, 163
dynamic allocation 148, 157, 160

E
ECB 2, 214–215
E-MCS console 162
EMH 6, 134
exit 27, 63–65, 85–86, 90, 112, 124, 166, 209
EXVR 135

F
Fast Path 1, 6–7, 9, 11, 13, 21, 26, 29, 33, 48, 53, 90–93,
97, 101, 103, 130–132, 134, 136–137, 143–146, 158,
178, 184, 188

IMS Monitor 13, 21
IMS PA Fast Path Transaction Exception Log report
102
sync point processing 7, 132
transaction flow 6

Fast Path buffers 101, 131, 145, 178
Fast Path transactions

flow 6
FIX 152
FPBUF 150
Full-Function transactions

scheduling 5

G
GSAM 53, 55, 123–124

PROCOPT 123
GTF

SMF 193

H
HALDB 29, 53, 61, 64–65, 67, 69–70, 72–73, 82, 87–89,
104–105, 124, 158
HDAM 53, 55, 57, 61–63, 67, 69, 71–74, 76, 78, 81–84,
86–88, 90, 104–105, 124, 225–226, 228, 230, 233

randomizers 62
HIDAM 53, 56–57, 60–63, 66, 69, 71, 78, 80–84, 86–88,
104–105, 114, 121, 199, 227–228, 230
High Performance Pointer Checker 74
HIOP 4–6, 10, 14, 126, 133, 139
HIOP pool 4
Hiperspace 116, 118–119, 121
HISAM 53, 55, 57–60, 66, 69, 77–78, 84–85, 87–88, 117,
225
host name 216
HSSP 57, 92, 103
HTTP 215

I
IDCAMS 164
IMS xiii–xiv, 1–17, 19–22, 24–30, 32, 34, 36, 41–43,
45–51, 54–56, 58, 60–62, 64, 66–84, 86–92, 94–101,
103–104, 106–107, 109, 111–112, 115–122, 124–153,
155–158, 160, 162, 164–166, 169–171, 173, 175–177,
181, 183–199, 201–209, 211–219, 222, 224–230, 238,
241
IMS command 162
IMS Connect 4, 19, 21, 26, 42, 211–216, 220

MAXSOC 214
PORTID 212

IMS Connect Extensions 21, 42–43
IMS Connector for Java 213–214
IMS execution parameters 130
IMS Java 184, 211, 217, 219
IMS latches 144

254 IMS Performance and Tuning Guide

IMS Monitor 11–13, 17, 19–21, 139, 188, 192, 195
IMS Monitor reports 12, 17
IMS PA 21, 26, 92, 96, 99, 102, 104, 140, 146–147,
192–193

ESAF (Log) report 193
ESAF (Monitor) report 193

IMS Performance Analyzer 42
see IMS PA 19–20, 26, 96, 102–103, 140, 194

IMS pools 36
IMS Problem Investigator 42
IMS SOAP Gateway 215–216
IMSID 185
IMSMON 17
IMSplex 36, 158
INIT.DB command 65, 104
INIT.DBDS 94
INIT.PART command 67, 70, 72
intent conflict 15, 126
intent lists 15, 126, 138, 147
IOPCB 6
IPV6 214–215
IRLM 29–31, 34–36, 49, 100, 141–142, 189–190,
201–202, 204–205

address space 142
false contention 204
lock structure 203–204
locks 204
PC=NO 203
PC=YES 203

IRM header 213–214
ISC 4–6, 126
ISPF 20, 26, 28–29, 193
IWAIT

I/O 188, 195
NOT-IWAIT 5, 10, 109, 143, 233
region 195

IWAIT times 139
IWAITs 23–24, 92, 104, 145, 188, 196

J
J2EE 215
Java 170, 184, 211, 213–214, 217–221
Java Virtual Machine 218
JBP 183, 185, 217
JCL 17, 20, 28, 111, 113, 130, 158, 160, 178, 228
JDBC 217
JMP 183, 185, 217, 220
JVM 218, 220

K
KBLA 20, 27–29, 31–32, 34
key-sequenced data set (KSDS) 162
KSDS 25, 58–59, 67, 69, 87, 115–117, 119, 123, 159,
162, 224–225, 227, 229–230

L
LGMSGSZ 207
LIST.RECON 162

LKASID 97–99, 206
LLA 127
load balancing 214
LOCKSIZE parameter 189
log records 1, 3, 8, 13, 27–30, 34, 80, 131, 136, 140, 156,
209
logical relationships 53, 57, 60, 81, 224
LPA 129, 138
LU2 215

M
MAXFILEPROC 214
MAXPST 152
MAXRGN 5, 129–130, 209
MAXSOC 213, 215
MAXSOCKETS 214
MAXTHRD 151
MAXTHREAD 151
MAXUSRS 203
MCS 132, 162
message queue

I/Os 138
QBUF 10, 138

message queue data sets 5, 14, 126
MFS 4–6, 14, 126
migration xiv
MINTHRD 150
MINTHREAD 150
mode 7, 50, 129, 136, 143
MODE=MULT 16
monitoring tools 12, 19–20

IMS PA 20, 26
MPP 102, 112, 129–130, 132, 144, 183, 185, 188,
198–199, 220
MQSeries 184
MSC 11–13, 29–30, 136, 207
MSDB 7, 57, 90, 93–95, 102–103

IMS system checkpoint 94
MVS 129, 131, 135–138, 140–143, 202, 207–209
MVS fix list 141, 145

N
NBA 33–34, 98, 101, 103, 131, 150, 178
number of message-processing regions 144

O
OBA 92, 98, 101, 103, 131–132, 150, 178
OBJAVGSZ 207–208
OLDS 4, 28, 30, 32, 34, 104, 130–131, 136, 151,
156–158, 164–165, 216
on demand 52, 211
online change 146
OSAM 31, 43, 51, 53, 55, 60, 63, 66–67, 69, 73, 83, 88,
104–109, 111, 114–115, 118, 124, 139, 141, 145, 177,
191, 201, 205, 225, 227–228

sequential buffering 51, 112, 115, 229
statistics 110

OSAM buffer pool 106–108

 Index 255

OTMA 4, 207, 212
OTMASE 166

P
page faulting 145
page faults 107
page fixing 131
paging 13, 36, 50–51, 95, 107, 128, 140–141, 143, 145

swapping 141
Parallel xiv, 36, 153, 201
parallel scheduling 151
PBOF 150
PCB 89, 92–94, 97, 112, 114, 171, 173, 175–176, 188,
190, 196–197, 199, 219, 232
performance xiii–xiv, 1–4, 6, 8–13, 17–21, 24–26, 29–30,
32, 36, 42–43, 45–46, 48–51, 53–54, 58, 62–63, 74–75,
86, 90–96, 98, 100–101, 107, 111, 118, 123–130,
134–137, 139–141, 150–152, 156–157, 159, 161–162,
169, 175–177, 180, 183, 189–193, 200–204, 206–209,
211–216, 218–220, 222, 224–227, 230–232

database design 21
DB2 183, 190
DBCTL 150
DBRC 159
logging 157
objectives 2, 46, 212, 224

persistent socket 213
PI 21, 31, 100, 137, 144, 189, 199
PIMAX 137, 152
PL/I 128, 179
PLPA 128
pool space failure 147
port 212–213, 216
preload 128
problem

performance 11, 227
PROCLIB 94–95, 97, 101, 107, 112, 116, 128, 131, 133,
135–137, 139, 141, 144, 180, 185
PROCLIM 5, 129, 188
PROCOPT 92–93, 97, 100, 104, 124, 175–177, 190,
206, 232

GOT 176–177, 232
GOx 176, 190

Program isolation 140
program load 5, 7, 10, 125, 144, 188
project xiv
PSB pool 10, 141, 144–145
Pseudo-WFI (PWFI) 188
PST 13, 36, 102, 113, 137, 146, 150–152, 199, 238, 241
PWFI 130, 151, 188

Q
QBUF 4, 135, 138, 142, 207
QBUFHITH 207
QBUFMAX 207
QBUFSZ 207
QSAM 54–55, 106, 124
Quick reschedule 188

R
RACF 31, 155, 165–166, 191, 215–216
real storage 20, 27, 43, 110–111, 128, 140, 148, 157,
229
RECANY buffers 138
RECON 162, 164
RECON data sets 159–162
Redbooks Web site 251

Contact us xvi
region occupancy 15, 118, 126, 188
RES 152
RESLIB 112
Resource 36, 50, 92, 101, 104, 115, 132, 142, 146–147,
155, 161, 165, 192
resource 42
response time

I/O 14, 51, 126
RMF 49, 105, 139–141, 165, 192, 202, 204
RMF Monitor I 140
RMF Monitor I reports 140
RMF Monitor II 140
RMF Monitor II reports 140
ROLL call 141
RRS 207
RSR 158

S
scheduling 4–7, 10, 13, 15–16, 27, 33, 123–126, 128,
137–138, 140, 143–144, 147–148, 151, 187–189, 209
SDFSRESL 163
security 28, 42, 87, 165–166, 187, 191–192, 218

DB2 subsystem 191
SAF interface 165
SMU 165

SECURITY macro 165
Shared Queues 201, 206
shared queues 138, 153, 206–207, 209
shared SDEPs 100
Shared Virtual Storage Option 91, 96
Shared VSO 96, 201, 206
SHMSGSZ 207
SINGLE 108–111
SMB 4–5, 126, 198
SMF 3, 139, 165, 203
SMU 165–166
SOAP 211, 215–216
sockets 21, 213–214
space failure 147
SPM 152
SQL 3, 184–185, 187–189, 191–193, 195, 217, 219
SSLENVAR 212
SSLPORT 212
state data 140
Statistical Analysis Utility 27
storage 4–5, 20, 27, 31, 36, 43, 50–51, 56–57, 85, 90,
92, 94–96, 99, 101, 107, 110–111, 115–116, 118, 121,
123, 128–130, 133–134, 136, 138, 140–141, 144–145,
147, 151–152, 157, 161, 165, 179–181, 187–188,
202–203, 205–207, 209, 229

256 IMS Performance and Tuning Guide

syncpoint 9, 93–94, 98, 206
SYS1.PARMLIB 141, 214
sysplex 1, 153, 161, 201, 204–206, 209, 212, 220
Sysplex Distributor 214
system definition 136, 138, 146, 191
system generation 130, 165

T
TCP/IP 21, 49, 212–215
TCP/IP statement 212
TIMEOUT 203
TRANSACT 129–130, 188
transaction

profile 2–3, 47, 181, 220
transaction code 130
transaction profiles 48–49
TSO 162, 183
tuning xiii–xiv, 11, 20–21, 26, 30, 42, 101, 106, 109–110,
115, 121–123, 134, 224–225, 228–230, 233
two-phase commit 6, 184

U
U777 141
UOR 17
UPDATE 192
user data 89–90, 202
user exits 42

V
VAUT 139
VIPA 214
Virtual fetch 129
VLF 166
VSAM 22, 24–25, 31, 43, 51, 53–55, 57–59, 66, 68–70,
73, 83, 88, 95, 104–105, 112, 115, 117, 119–124, 137,
139–141, 145, 158–160, 162, 164, 191, 201, 205,
224–225, 227, 229–230, 233

BGWRT 118
statistics 24, 120–121

VSAM buffer pool 24, 106, 119
VSO 33–34, 57, 90–96, 99–100, 102, 132, 158,
201–202, 205–206

I/O reduction 93
IMS system checkpoint 93
OTHREAD process 94
performance tips 91

VSPEC 152
VTAM 4, 49, 126, 135, 142, 215
VTCBs 135

W
WebSphere 217
WFI 7, 27, 130, 180, 188–190, 209

transactions 189
WLM 4, 6–7, 15–16, 45–52, 126, 140, 142–143, 203
workload balancing 36, 206
Workload Manager 12, 45–46

X
XCF 140, 204, 212, 214
XCF group 214
XML 216–217
XRF 158

Z
z/OS 2, 12, 15, 19–21, 26, 36, 41–43, 45–46, 50–52, 67,
69, 74–75, 84, 90–92, 95, 99, 104, 115–116, 118, 126,
128, 161–162, 170, 181, 183, 192, 202, 212, 218, 220
z/OS 1.7 220

 Index 257

258 IMS Performance and Tuning Guide

(0.5” spine)
0.475”<

->
0.873”

250 <
->

 459 pages

IM
S Perform

ance and Tuning Guide

IM
S Perform

ance and Tuning Guide

IM
S Perform

ance and Tuning Guide

IM
S Perform

ance and Tuning Guide

IM
S Perform

ance and Tuning Guide

IM
S Perform

ance and Tuning Guide

®

SG24-7324-00 ISBN 0738494615

INTERNATIONAL
TECHNICAL
SUPPORT
ORGANIZATION

BUILDING TECHNICAL
INFORMATION BASED ON
PRACTICAL EXPERIENCE

IBM Redbooks are developed
by the IBM International
Technical Support
Organization. Experts from
IBM, Customers and Partners
from around the world create
timely technical information
based on realistic scenarios.
Specific recommendations
are provided to help you
implement IT solutions more
effectively in your
environment.

For more information:
ibm.com/redbooks

IMS Performance and
Tuning Guide

Learn about IMS
database, transaction
manager, and system
performance

Look at the available
methods and tools for
monitoring

Examine various
aspects of Parallel
Sysplex

This IBM Redbook provides IMS performance monitoring and tuning
information. This book differs from previous IMS performance and
tuning redbooks in that there is less emphasis on the internal workings
of IMS and more information about why and how certain options can
affect the performance of IMS.

Most of the information in the previous IBM Redbook IMS Version 7
Performance Monitoring and Tuning Update, SG24-6404, is still valid,
and in most cases, continues to be valid in any future versions of IMS.
This book is not an update or rewrite but instead attempts to be more
of a guide than a reference. As such, the team gathered experiences
and data from actual production environments as well as from IBM
benchmarks and solicited input from experts in as many areas as
possible.

You should be able to find valuable new information and perhaps
validate things you might have questioned. Hardware and software
characteristics are constantly changing, but hopefully the information
that you find here provides a basis to help you react to change and to
keep your IMS running efficiently.

In this IBM Redbook, we introduce methods and tools for monitoring
and tuning IMS systems, and in addition to IMS TM and DB
system-wide performance considerations, we dedicate separate
chapters for application considerations, IMS and DB2 interoperability,
the Parallel Sysplex environment, and On Demand considerations.

Back cover

http://www.redbooks.ibm.com/
http://www.redbooks.ibm.com/
http://www.redbooks.ibm.com/

	Front cover
	Contents
	Notices
	Trademarks

	Preface
	The team that wrote this redbook
	Become a published author
	Comments welcome

	Chapter 1. Defining the performance problem in an IMS environment
	1.1 Performance overview
	1.2 Understanding the performance problem
	1.2.1 Defining a service level agreement
	1.2.2 Transaction profiles
	1.2.3 Analysis and interpretation
	1.2.4 Tracking and trending

	1.3 Events for full function messages
	1.3.1 Message arrives into IMS
	1.3.2 Message queuing
	1.3.3 Message scheduling
	1.3.4 Scheduling-end to first DL/I call
	1.3.5 Program elapsed time
	1.3.6 Sync point processing
	1.3.7 Message output

	1.4 Events for Fast Path messages
	1.4.1 Message arrives into IMS
	1.4.2 Fast Path EMH queuing
	1.4.3 Fast Path EMH scheduling
	1.4.4 Program elapsed time
	1.4.5 Sync point processing

	1.5 Events for DBCTL
	1.5.1 Message arrives into CICS TOR/AOR
	1.5.2 Application gets control and issues schedule request
	1.5.3 PSB scheduling
	1.5.4 Program elapsed time
	1.5.5 Sync point processing
	1.5.6 Application issues terminate PSB call

	1.6 Common log records produced for transaction flows
	1.7 Problem identification matrix

	Chapter 2. Monitoring methodology
	2.1 Establishing monitoring strategies
	2.2 Monitoring multiple systems in DB/DC and DCCTL environments
	2.3 Coordinating performance information in an MSC network
	2.4 Monitoring Fast Path systems in DB/DC and DCCTL environments
	2.5 Transaction flow in DB/DC and DCCTL environments
	2.6 The IMS Monitor in DB/DC and DCCTL environments
	2.7 Monitoring procedures in a DBCTL environment

	Chapter 3. Monitoring tools
	3.1 IMS monitoring tools
	3.2 IMS Monitor
	3.3 IMS Performance Analyzer
	3.4 File Select and Formatting Print utility (DFSERA10)
	3.5 Log Transaction Analysis utility (DFSILTA0)
	3.6 Knowledge-Based Log Analysis (KBLA)
	3.6.1 MSC Link Performance Analysis
	3.6.2 Statistic Log Record Analysis
	3.6.3 DBCTL Transaction Analysis
	3.6.4 IRLM Lock Trace Analysis

	3.7 IBM Tivoli OMEGAMON XE for IMS on z/OS
	3.7.1 OMEGAMON XE for IMS in IMSplex environment
	3.7.2 Using OMEGAMON XE for IMS for monitoring IMS Connect
	3.7.3 Additional references

	3.8 IBM IMS Connect Extensions for z/OS
	3.9 IBM IMS Buffer Pool Analyzer for z/OS

	Chapter 4. IMS and Workload Manager
	4.1 Workload manager in an IMS world
	4.1.1 Defining IMS workloads to WLM
	4.1.2 Rules for ensuring the correct priorities are assigned

	4.2 CPU management
	4.3 Memory management
	4.3.1 Identifying memory-related problems

	4.4 I/O subsystem
	4.4.1 Ideas to minimize I/O contention

	Chapter 5. Database performance
	5.1 Access methods
	5.1.1 Selecting an access method

	5.2 HISAM as opposed to HD access methods
	5.2.1 HISAM
	5.2.2 SHISAM
	5.2.3 HD access methods

	5.3 (P)HDAM as opposed to (P)HIDAM
	5.3.1 Space use
	5.3.2 Sequential processing
	5.3.3 I/Os
	5.3.4 Reorganizations
	5.3.5 Creeping keys
	5.3.6 Recommendation summary for (P)HDAM as opposed to (P)HIDAM

	5.4 HALDB
	5.4.1 HALDB partition selection
	5.4.2 Key range partition selection
	5.4.3 Partition selection exit routine
	5.4.4 Defining partition selection
	5.4.5 Recommendation summary for HALDB partition selection
	5.4.6 HALDB indirect data set lists

	5.5 Block sizes, CI sizes, and record sizes
	5.5.1 Index CI sizes and record sizes
	5.5.2 OSAM block sizes and VSAM ESDS CI sizes
	5.5.3 FREQ parameter on the SEGM statement
	5.5.4 Recommendation summary for block sizes, CI sizes, and record sizes

	5.6 Free space
	5.6.1 Specifying free space
	5.6.2 HD space search algorithm
	5.6.3 Recommendation summary for free space

	5.7 Randomization parameters
	5.7.1 Randomizer
	5.7.2 Number of RAPs
	5.7.3 Size of root addressable area
	5.7.4 The BYTES parameter
	5.7.5 Specifying randomization parameters for PHDAM
	5.7.6 Recommendation summary for randomization parameters
	5.7.7 Monitoring HDAM databases
	5.7.8 Loading or reloading HDAM databases

	5.8 Fixed length as opposed to variable length segments
	5.8.1 Variable length segment
	5.8.2 Fixed length segment
	5.8.3 Recommendations for fixed as opposed to variable length segments

	5.9 Pointer options
	5.9.1 Hierarchic as opposed to child and twin pointers
	5.9.2 Forward only as opposed to forward and backward pointers
	5.9.3 HIDAM and PHIDAM root segments
	5.9.4 Unsequenced dependent segments
	5.9.5 Defining hierarchical, physical twin, and physical child pointers
	5.9.6 Recommendation summary for pointer options

	5.10 SCAN= parameter on the DATASET statement
	5.11 Multiple data set groups
	5.12 Compression
	5.12.1 Key compression as opposed to data compression
	5.12.2 COMPRTN= parameter
	5.12.3 Recommendation summary for compression

	5.13 Encryption
	5.14 Secondary indexes
	5.14.1 Secondary index keys
	5.14.2 Direct as opposed to symbolic pointers
	5.14.3 Shared secondary indexes
	5.14.4 Duplicate data
	5.14.5 User data
	5.14.6 Sparse indexing
	5.14.7 Recommendation summary for secondary indexes

	5.15 Fast Path performance considerations
	5.15.1 Virtual Storage Option (VSO)
	5.15.2 Field (FLD) calls support
	5.15.3 Shared Virtual Storage Option (SVSO)
	5.15.4 DEDB general performance considerations
	5.15.5 DASD or channel contention for I/O on DEDB
	5.15.6 OTHREAD contention
	5.15.7 Increased I/O or CI contention for independent or dependent overflow
	5.15.8 Overflow Buffer Allocation (OBA) latch wait
	5.15.9 DEDB sequential processing
	5.15.10 I/O error toleration support for DEDB
	5.15.11 DEDB using the Virtual Storage Option
	5.15.12 Shared Virtual Storage Option
	5.15.13 Local buffer pool definitions
	5.15.14 PRELOAD | NOPREL option
	5.15.15 Block level locking and root-only DEDBs
	5.15.16 Sequential dependent sharing (shared SDEPs)
	5.15.17 IMS Fast Path buffers
	5.15.18 Normal buffer allocation
	5.15.19 Overflow Buffer Allocation (OBA)

	5.16 Non-recoverable databases
	5.17 OSAM as opposed to VSAM
	5.17.1 Performance results on OSAM and VSAM
	5.17.2 Recommendation summary for OSAM as opposed to VSAM

	5.18 Buffer life concept
	5.19 Overflow sequential access method (OSAM)
	5.19.1 Tuning OSAM buffers
	5.19.2 OSAM data set notes
	5.19.3 OSAM sequential buffering

	5.20 Virtual storage access method (VSAM)
	5.20.1 Tuning VSAM buffers
	5.20.2 VSAM background write
	5.20.3 VSAM hiperspace buffers
	5.20.4 VSAM statistics
	5.20.5 Tuning VSAM data sets

	5.21 Improve GSAM performance
	5.22 When to reorganize

	Chapter 6. Transaction manager performance
	6.1 Scheduling to first IMS call
	6.2 Program load options
	6.3 Transaction macro parameter options
	6.4 IMS parameters
	6.4.1 ARC parameter
	6.4.2 BSIZ parameter
	6.4.3 CPLOG parameter
	6.4.4 DBBF parameter
	6.4.5 DBFP parameter
	6.4.6 DBFX parameter
	6.4.7 Dynamic pools parameters
	6.4.8 EMHL parameter
	6.4.9 EXVR parameter
	6.4.10 Hash tables parameters: LHTS, NHTS, and UHTS
	6.4.11 Logging parameters
	6.4.12 LSO parameter
	6.4.13 Message format buffer pool parameters
	6.4.14 OTHR parameter
	6.4.15 Parameters for scheduling pools
	6.4.16 PI parameters
	6.4.17 PRLD parameter
	6.4.18 PST and MAXPST parameters
	6.4.19 QBUF parameter
	6.4.20 RECA parameter
	6.4.21 RES parameter
	6.4.22 SAV parameter
	6.4.23 SRCH parameter
	6.4.24 VAUT parameter
	6.4.25 VSPEC parameter

	6.5 Data gathering
	6.5.1 IMS Monitor
	6.5.2 Recording the pool transaction
	6.5.3 Gathering the system monitoring data
	6.5.4 IMS log data

	6.6 Page fixing
	6.7 WLM
	6.7.1 IRLM address space
	6.7.2 DBRC address space
	6.7.3 CQS address space
	6.7.4 IMS control region
	6.7.5 IMS DLS address space
	6.7.6 IMS dependent regions

	6.8 IMS variable pool considerations
	6.8.1 Relationship with scheduling

	Chapter 7. Performance considerations for DBCTL
	7.1 DBCTL performance considerations
	7.2 DFSPZPxx
	7.3 Scheduling
	7.4 IMS startup parameters for DBCTL
	7.5 Parallel Sysplex

	Chapter 8. System considerations
	8.1 The IMS logger
	8.1.1 Logging considerations

	8.2 DBRC
	8.2.1 DBRC performance considerations
	8.2.2 Defining the RECON data sets
	8.2.3 Resolving data set contention problems
	8.2.4 DBRC RECON maintenance

	8.3 SMF and RMF considerations
	8.4 Security considerations
	8.5 Batch application performance
	8.5.1 Using DLI or DBB

	8.6 Utility performance

	Chapter 9. Application considerations
	9.1 IMS language interface
	9.1.1 Structure of a typical program using the language interface

	9.2 Performance and programming considerations
	9.2.1 SSA considerations
	9.2.2 Single as opposed to multiple positioning
	9.2.3 Variable length segments
	9.2.4 Secondary indexing
	9.2.5 Program reusability considerations
	9.2.6 Processing options and the PROCOPT statement
	9.2.7 Read only programs
	9.2.8 PROCOPT=GOT with DBRC SHARECTL
	9.2.9 Use of checkpointing in batch
	9.2.10 Multi-streaming your batch processes
	9.2.11 Why must online programs be serially reusable

	9.3 Language environment
	9.3.1 Application and performance considerations in a LE environment

	Chapter 10. Performance considerations with DB2
	10.1 IMS External Subsystem Attach Facility
	10.1.1 Subsystem member

	10.2 Tuning the External Subsystem Attach Facility
	10.2.1 Thread management
	10.2.2 DB2 lock management
	10.2.3 DB2 free space
	10.2.4 Static as opposed to dynamic SQL
	10.2.5 Security controls

	10.3 Multi-row FETCH and INSERT
	10.4 Tools for monitoring
	10.4.1 IMS Performance Analyzer
	10.4.2 IMS Monitor
	10.4.3 Deadlock report

	10.5 When to reorganize your DB2 tablespace or indexspace
	10.5.1 Tablespace
	10.5.2 Indexspace

	10.6 More information

	Chapter 11. IMS Parallel Sysplex considerations
	11.1 Hardware and microcode
	11.1.1 Coupling Facility configuration
	11.1.2 Coupling Facility microcode

	11.2 Structure sizing
	11.3 IRLM considerations
	11.4 IRLM lock structure
	11.4.1 Lock structure size
	11.4.2 False contention
	11.4.3 Automatic rebuild
	11.4.4 System-managed duplexing

	11.5 VSAM cache structure
	11.6 OSAM cache structure
	11.7 DEDB considerations
	11.7.1 Shared VSO

	11.8 Application considerations
	11.9 Shared queues
	11.9.1 IMS parameters
	11.9.2 Structure size
	11.9.3 Structure duplexing
	11.9.4 Overflow
	11.9.5 Structure checkpoint
	11.9.6 MVS logger
	11.9.7 FF scheduling differences
	11.9.8 FP Parallel Sysplex processing options

	Chapter 12. IMS On Demand performance
	12.1 IMS connectivity solutions using IMS Connect
	12.1.1 Socket types
	12.1.2 Asynchronous output processing
	12.1.3 Performance statistics on IMS Connect

	12.2 IMS SOAP Gateway
	12.2.1 Performance considerations using the IMS SOAP gateway

	12.3 IMS Java environment
	12.3.1 IMS Java application performance considerations
	12.3.2 COBOL to Java translations
	12.3.3 Performance statistics comparing COBOL to Java

	Appendix A. Guidelines and recommendations
	A.1 First step
	A.2 Choosing an IMS access method
	A.3 HISAM
	A.3.1 HISAM performance general guidelines

	A.4 HDAM
	A.4.1 HDAM performance general guidelines

	A.5 HIDAM
	A.5.1 HIDAM performance general guidelines

	A.6 OSAM
	A.6.1 OSAM tuning general guidelines

	A.7 VSAM tuning general rules
	A.7.1 VSAM data set tuning general guidelines
	A.7.2 ESDS performance guidelines
	A.7.3 KSDS performance guidelines

	A.8 Secondary index performance guidelines
	A.9 Block or CI size performance guidelines
	A.10 FREESPACE performance guidelines
	A.11 Segment edit/compression performance considerations
	A.12 Programming performance considerations
	A.13 Logging performance considerations
	A.14 Use HDAM physical sequence sort and reload
	A.15 I/O error processing
	A.16 What is a Kilobyte

	Appendix B. Coding examples
	B.1 Sparse index examples
	B.1.1 Source segment
	B.1.2 Index segment

	Abbreviations and acronyms
	Related publications
	IBM Redbooks
	Other publications
	Online resources
	How to get IBM Redbooks
	Help from IBM

	Index
	Back cover

